Math 1131 Practice Problems for Exam 3 Multiple Choice

Sections Covered: 3.9, 3.10, 4.1, 4.2, 4.3, 4.4, 4.7, 4.8

Read This First!

- These practice problems are NOT sufficient review for the exam and do not represent the exact length of the exam. You should also use other resources, such as the textbook, worksheets, and Paul's Online notes to find further practice problems on topics that you have struggled with (or that you have trouble with on the practice problem set).
- Use these practice problems, in addition to other course materials, as a guide to determine what you need to study more deeply.
- The exam will contain some multiple choice questions as well as short-answer questions. Short answer questions may be similar to questions found in lecture videos, live class activities, worksheets, and/or WebAsisgn. When studying, make sure you are able to fully justify your answers and reasoning to prepare for the short-answer portion of the exam.
- The exam will be 50 minutes during your regular discussion section meeting.
- Please read each question carefully. For multiple choice questions, there is only one correct choice for each answer.
- On the exam, please carefully check all of your final answers. The submitted letter answers are the ONLY place that counts as your official answers for multiple-choice questions.
- You may NOT use a calculator or any other references on the exam, and you are expected to work independently.

1. Use the linearization for the function $f(x)=\sqrt{x^{3}+2 x+1}$ at $x=1$ to approximate the value of $f(1.1)$.

$$
\begin{aligned}
& \begin{array}{ll}
\begin{array}{ll}
\text { (A) } \frac{161}{80} & \text { (B) } \frac{21}{10} \\
\text { (D) } \frac{1}{2} & \text { (E) } \frac{17}{16}
\end{array} \\
f(1.1) \approx f(1)+(1.1-1) \cdot f^{\prime}(1) \\
f(1)=\sqrt{1+2+1}=2 \\
f^{\prime}(x)=\frac{1}{2 \sqrt{x^{3}+2 x+1}} & \left(3 x^{2}+2\right) \\
f^{\prime}(1)=\frac{1}{2 \cdot 2} \cdot 5=\frac{5}{4} \\
f(1.1) \approx 2+0.1 \cdot \frac{5}{4}=2+\frac{5}{40}=2+\frac{1}{8}=\frac{17}{8}
\end{array}
\end{aligned}
$$

2. Which of the following is the absolute maximum value of the function $f(x)=\frac{x}{x^{2}+4}$ on the interval $[0,4]$?
(A) $\frac{1}{8}$
(B) $\frac{1}{5}$ (C) $\frac{1}{4}$
(D) $\frac{1}{2}$
(E) 1
$f^{\prime}(x)=\frac{x^{2}+4-x(2 x)}{\left(x^{2}+4\right)^{2}}=\frac{4-x^{2}}{\left(x^{2}+4\right)^{2}}$
$f^{\prime}(x)=0$ only when $4=x^{2}, x= \pm 2$, only +2 is in $[0,4]$ $f(x)$ differentiable on $(0,4)$
Ont paints where cobsoliete mex can be are
$x=2$ or the end points 0,4

3. A particle moves along the curve $y=\sqrt[3]{x^{4}+11}$. As it reaches the point $(2,3)$, the y-coordinate is increasing at a rate of $32 \mathrm{~cm} / \mathrm{s}$. Which of the following represents the rate of increase of the x-coordinate at that instant?

$$
\begin{aligned}
& \begin{array}{ll}
\text { (A) } 27 \mathrm{~cm} / \mathrm{s} & \text { (B) } 9 \mathrm{~cm} / \mathrm{s} \quad \text { (D) } 27 / 2 \mathrm{~cm} / \mathrm{s}
\end{array} \\
& \frac{d y}{d t}=\frac{1}{3 \sqrt[3]{\left(x^{4}+17\right)^{2}}} \cdot 4 x^{3} \frac{d x}{d t} \\
& \begin{aligned}
\frac{d x}{d t} & =\frac{3}{4} \frac{\sqrt[3]{\left(x^{4}+11\right)^{2}}}{x^{3}} \cdot \frac{d y}{d t} \\
& =\frac{3}{4} \cdot \frac{\sqrt[3]{\left(2^{4}+11\right)^{2}}}{2^{3}} \cdot 32 \\
& =3 \sqrt[3]{27^{2}}=3 \cdot 3^{2}=27
\end{aligned}
\end{aligned}
$$

4. Water is withdrawn at a constant rate of $2 \mathrm{ft}^{3} / \mathrm{min}$ from an inverted cone-shaped tank (meaning the vertex is at the bottom). The diameter of the top of the tank is 4 ft , and the height of the tank is 8 ft . How fast is the water level falling when the depth of the water in the tank is 2 ft ? (Remember that the volume of a cone of height h and radius r is $V=\frac{\pi}{3} r^{2} h$?)
(A) $\frac{2}{\pi} \mathrm{ft} / \mathrm{min}$
(B) $\frac{4}{\pi} \mathrm{ft} / \mathrm{min}$
(C) $\frac{6}{\pi} \mathrm{ft} / \mathrm{min}$

$r(h)=\frac{h}{4}$

$V(h)=\frac{\pi}{3} \frac{h^{2}}{16} \cdot h=\frac{\pi}{3} \frac{h^{3}}{16}$

$$
\frac{d V}{d t}=\frac{\pi}{16} \underbrace{h^{2}}_{2^{2}} \frac{d h}{d t}
$$

$$
2 \mathrm{ft}^{3} / \mathrm{min}
$$

$$
\frac{d h}{d t}=\frac{2 \cdot 16}{4 \pi}=\frac{8}{\pi}
$$

5. What is the recursion from Newton's method for solving $x^{2}-7=0$?
(A) $x_{n+1}=\left(x_{n}^{3}-9 x_{n}\right) /\left(x_{n}^{2}-7\right)$
(B) $x_{n+1}=\left(x_{n}^{2}+7\right) /\left(2 x_{n}\right)$
(C) $x_{n+1}=\left(x_{n}^{2}-7\right) /\left(2 x_{n}\right)$
(D) $x_{n+1}=\left(3 x_{n}^{2}+7\right) /\left(2 x_{n}\right)$
(E) $x_{n+1}=\left(3 x_{n}^{2}-7\right) /\left(2 x_{n}\right)$
$x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$
$f(x)=x^{2}-7$
$x_{n+1}=x_{n}-\frac{x_{n}^{2}-7}{2 x_{n}}=\frac{2 x_{n}^{2}-\left(x_{n}^{2}-7\right)}{2 x_{n}}=\frac{x_{n}^{2}+7}{2 x_{n}}$
6. Let $f(x)=x^{2}-10$. If $x_{1}=3$ in Newton's method to solve $f(x)=0$, determine x_{2}.
(A) $1 / 2$
(B) $19 / 6$
(C) $15 / 4$
(D) $12 / 7$
(E) $17 / 6$

$$
\begin{aligned}
& f(x)=x^{2}-10 \\
& f^{\prime}(x)=2 x \\
& x_{n+1}=x_{n}-\frac{x_{n}^{2}-10}{2 x_{n}}
\end{aligned}
$$

$$
x_{1}=3
$$

$$
x_{2}=3-\frac{3^{2}-10}{2 \cdot 3}=3-\frac{-1}{6}=3+\frac{1}{6}=\frac{19}{6}
$$

7. Find all values) of the number c that satisfy the conclusion of the Mean Value Theorem for the function $f(x)=x^{3}$ on the interval $[0,3]$, if any exist.

8. Find all value(s) of x where $f(x)=2 x^{3}+3 x^{2}-12 x$ has a local minimum.
(A) 1
(B) -2
(C) $-2,1$
(D) $-2, \frac{1}{2} \quad$ (E) $-2, \frac{1}{2}, 1$
$f^{\prime}(x)=6 x^{2}+6 x-12=\sigma\left(x^{2}+x-2\right)$
$f^{\prime}(x)=0 \quad x^{2}+x-2=0 \quad(x+2)(x-1)=0$

Critical numbers $x=-2, x=1$
With $2^{\text {nd }}$ derivective test
$f^{\prime \prime}(x)=6(2 x+1)$

9. How many inflection points does the graph of $f(x)=x^{4}-8 x^{2}-7$ have?
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
$f^{\prime}(x)=4 x^{3}-16 x$
$f^{\prime \prime}(x)=12 x^{2}-16$
$f^{\prime \prime}(x)=12\left(x^{2}-\frac{16}{12}\right)=12\left(x^{2}-\frac{4}{3}\right)$
$f^{\prime \prime}(x)=0 \quad: \quad x= \pm \sqrt{\frac{4}{3}}$
$f^{\prime \prime}$ switches form $+t^{3}-$ at $x=-\sqrt{\frac{4}{3}}$ and $-t o+$ et so $\pm \sqrt{\frac{4}{3}}$ ore both inflection points $\quad x=\sqrt{\frac{4}{3}}$
10. Below is the graph of the derivative $f^{\prime}(x)$ of a function $f(x)$. At what x-valu es) does $f(x)$ have a local maximum or local minimum?

(A) Local maxima at -3 and 2 and local minima at -1 and 3
(B) Local maxima at -1 and 3 and local minima at -3 and 2
(C) Local maxima at -1 and 3 and local minimum at 2
(D) Local maxima at -3 and 2 and local minimum at -1
(E) None of the above
11. Referring to the same graph of the derivative in the question above, at approximately what x-values) is $f(x)$ concave up?
(A) $x<-1$ and $x>1.5$
(B) $-1<x<2$
(C) $-2.1<x<.8$ and $x>2.6$
(D) $-\infty<x<\infty$ between these
$f^{\prime \prime}\left(r^{\prime}\right)>0$ so contceve
(E) We cannot determine concavity of $f(x)$ from the graph of $f^{\prime}(x)$. $f^{\prime \prime}(x)=0$ for $x \approx-2.1, x \approx 0.8, \quad x \approx 2.6$
where we see humps in the graph go, f' (x). up concave
Page 5 of 10
$f^{\prime}(x)$ decreceses, them increceses, then decreases, then increceses green.
$f^{\prime \prime}(x)$, thin t, , then t
12. Below is the graph of the second derivative $f^{\prime \prime}(x)$ of a function $f(x)$ on the interval $[-1,3]$. Which of the following statements must be true?

(A) The function $f(x)$ is concave up when $-1<x<0$.
(B) The derivative $f^{\prime}(x)$ is decreasing when $0<x<3$.

(E) All of the above.
13. On which interval(s) is the function $f(x)=x^{4}-6 x^{3}+12 x^{2}+1$ concave down?
(A) $(-\infty, 1)$ only
(B) $(1,2)$ only
(C) $(-\infty,-1)$ and $(2, \infty)$
(D) $(2, \infty)$ only
(E) $(-\infty, 1)$ and $(2, \infty)$

14. Evaluate the following limit:
$\lim _{x \rightarrow 0^{+}} \frac{\sin x \longrightarrow}{x^{2} \longrightarrow 0}$ indeterniencete form
(A) $+\infty$
(B) $-\infty$
(C) 0

$$
\frac{(\sin x)^{\prime}}{\left(x^{2}\right)^{\prime}}=\frac{\cos x}{2 x} \rightarrow \frac{1}{0^{+}}=\infty
$$

(E) $-1 / 2$
15. Evaluate the following limit:

(A) 0
(B) 1
(C) $+\infty$
L'Hospital:
(D) -1
(E) $1 / 2$

$$
\frac{(1-\sin x)^{\prime}}{(\cos x)^{\prime}}=\frac{-\cos x}{-\sin x}=\frac{\cos x-x}{\sin \rightarrow 1}
$$

16. Determine the number of inflection points of the graph of $y=x^{2}-\frac{1}{x}$ on its domain.

17. Find two positive numbers x and y satisfying $y+2 x=80$ whose product is a maximum.
(A) 24, 32
(B) 26,28
(C) 20, 40
(D) 26,27
(E) None of the above

$$
y+2 x=80
$$

Want to maximize

$$
y=80-2 x
$$

$$
\begin{aligned}
& P(x)=x(80-2 x) \\
& P^{\prime}[x)=80-4 x
\end{aligned}
$$

$$
\begin{aligned}
& P^{\prime}[x]=80-4 x \\
& P^{\prime}[x]=0,80-4 x=0,80=4 x, \quad x=20, \begin{aligned}
y & =80-2 x \\
& =80-2.20 \\
& =40
\end{aligned}
\end{aligned}
$$

Graph of $F(x)$ is upsich-clawn persebolce, so the critical number $x=20$ with $P^{\prime}(20)=0$ is the tip so absolute moe.

- Standard method: Precticcel restrictions interval p interest: a in $[0,40]$

$$
\begin{gathered}
x \geq 0 \\
y_{1180-2 x} \geqslant 0
\end{gathered}, x \leqslant 40
$$

in teresfyg points

18. A box with square base and open top must have a volume of $4000 \mathrm{~cm}^{3}$. If the cost of the material used is $\$ 1 / \mathrm{cm}^{2}$, then what is the smallest possible cost of the box?
(A) $\$ 500$
(B) $\$ 600$
(C) $\$ 1000$
(D) $\$ 1200$
(E) $\$ 2000$

$$
4000 \Rightarrow 01=x^{2} \cdot y \quad y=\frac{4000}{x^{2}}
$$

$$
\begin{aligned}
& \text { COO VOL }=x^{2} \cdot y \quad(\text { base }+4 \text { sides }) \cdot 1=x^{2}+4 x y \\
& \text { Cost }=(\text { x as }
\end{aligned}
$$

no top

$$
C(x)=x^{2}+4 x \sum_{0}^{n o t o p}=x^{2}+4 x \cdot \frac{4000}{x^{2}}
$$

$$
=x^{2}+\frac{16000}{x}
$$

$$
x \geqslant 0 \text { since it's } x \text { length. }
$$

$$
\begin{aligned}
& x \geqslant 0 \text { since it's } x \text { engin }(0, d) \\
& \text { Want min }(x) \text { on }(0)
\end{aligned}
$$

$$
x=20, y=\frac{4000}{x^{2}}=\frac{4000}{20^{2}}=\frac{4000}{400}=10
$$

19. Which of the following choices for the function $f(x)$ would yield a situation in which the limit could be evaluated using l'Hopital's Rule?

20. A particle moves along a line with velocity $v(t)=t-\ln \left(t^{2}+1\right)$. What is its maximum velocity on the interval $0 \leq t \leq 2$?
(A) $1-\ln 2$
(B) 0
(C) $2-\ln 5$
(D) $\ln 2-1$
(E) $\ln 5-2$
$v(t)=t-\ln \left(t^{2}+1\right)$
$v^{\prime}(t)=1-\frac{2 t}{t^{2}+1}=\frac{t^{2}+1-2 t}{t^{2}+1}$
$v^{\prime}(t)=0 \quad t^{2}-2 t+1=0,(t-1)^{2}=0$,
$t-1=0, t=1$
Points of interest
on $[0,2]$

t	$v(t)$
0	$0-\ln 1=0$
1	$1-\ln 2$
2	$2-\ln 5$

Which is bigger? $1-\ln 2$ or $2-\ln 5$ $\left.1-\ln 2-\ln \frac{5}{2}-1<0, \quad \ln 5\right)=1 \begin{array}{ll}2-\ln 5> \\ 1-\ln 2>0\end{array}$ $\frac{\operatorname{loge}_{\text {Page } 9 \text { of } 10}^{2.5}}{\text { Page }} \quad$ loge $2.7, \log _{2}^{2}<1$

$$
\begin{aligned}
& \text { secant of slope }<3 \\
& \text { because } g \text { dip below } y=3 x+6 \text { in e } \\
& \text { Practice Problems for Exam } 3 \text { Multiple Choice }
\end{aligned}
$$

22. Using the table below, identify all critical numbers for the twice differentiable function $f(x)$ and determine if each critical value is a local maximum, local minimum, or cannot be determined (BD).

(A) Local max at 1 and 4 ; local min at -7 , -3 , and 0 ; CBD at -2 and 6
(B) Local max at -3 and 0 ; local nf at $4 ; \mathrm{CBD}$ at -2
has to be

(C) Local max at 4 ; local min at -3 and 0 ; CBD at -2
(如 Local max at 4; local min at $0 \quad$ No 3, -2 ,
(BC Local max at -7. -3 , and 0 ; local min at 1 and 4; CBD at -2 and 6
