

University of Connecticut Department of Mathematics

MATH 1131 PRACTICE PROBLEMS FOR EXAM 3 MULTIPLE CHOICE

Sections Covered: 4.1, 4.2, 4.3, 4.4, 4.7, 4.8, 4.9, and 5.1

Read This First!

- These practice problems are NOT sufficient review for the exam and do not represent the exact length of the exam. You should also use other resources, such as the textbook, worksheets, and Paul's Online notes to find further practice problems on topics that you have struggled with (or that you have trouble with on the practice problem set).
- Use these practice problems, in addition to other course materials, as a guide to determine what you need to study more deeply.
- The exam will be 50 minutes during your regular discussion section meeting.
- The exam will contain some multiple choice questions as well as short-answer questions. Short answer questions may be similar to questions found in lecture videos, live class activities, worksheets, and/or WebAsisgn. When studying, make sure you are able to fully justify your answers and reasoning to prepare for the short-answer portion of the exam.
- Please read each question carefully. There is only one correct choice for each answer.
- On the exam, please carefully check all of your final answers. The submitted letter answers are the **ONLY** place that counts as your official answers for multiple-choice questions.
- You may **NOT** use a calculator or any other references on the exam, and **you are expected to work independently.**

1. What is the recursion from Newton's method for solving $x^2 - 7 = 0$?

(A)
$$x_{n+1} = (x_n^3 - 9x_n)/(x_n^2 - 7)$$
 (B) $x_{n+1} = (x_n^2 + 7)/(2x_n)$ (C) $x_{n+1} = (x_n^2 - 7)/(2x_n)$
(D) $x_{n+1} = (3x_n^2 + 7)/(2x_n)$ (E) $x_{n+1} = (3x_n^2 - 7)/(2x_n)$

2. Let $f(x) = x^2 - 10$. If $x_1 = 3$ in Newton's method to solve f(x) = 0, determine x_2 .

- (A) 1/2 (B) 19/6 (C) 15/4
- (D) 12/7 (E) 17/6

3. Which of the following is the absolute maximum value of the function $f(x) = \frac{x}{x^2 + 4}$ on the interval [0, 4]?

(A)
$$\frac{1}{8}$$
 (B) $\frac{1}{5}$ (C) $\frac{1}{4}$
(D) $\frac{1}{2}$ (E) 1

- 4. Find all value(s) of the number c that satisfy the conclusion of the Mean Value Theorem for the function $f(x) = x^3$ on the interval [0,3], if any exist.
 - (A) 9 (B) $\sqrt{27}$ (C) $\sqrt{3}$
 - (D) 3 (E) No such value of c exists.

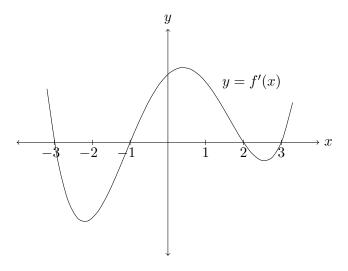
5. Find all value(s) of x where $f(x) = 2x^3 + 3x^2 - 12x$ has a local minimum.

(A) 1 (B) -2 (C) -2, 1
(D) -2,
$$\frac{1}{2}$$
 (E) -2, $\frac{1}{2}$, 1

6. How many inflection points does the graph of $f(x) = x^4 - 8x^2 - 7$ have?

- (A) 0 (B) 1 (C) 2
- (D) 3 (E) 4

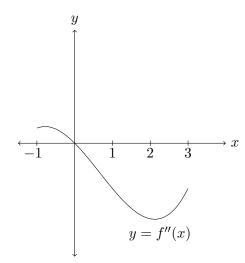
7. Below is the graph of the *derivative* f'(x) of a function f(x). At what x-value(s) does f(x) have a local maximum or local minimum?



- (A) Local maxima at -3 and 2 and local minima at -1 and 3
- (B) Local maxima at -1 and 3 and local minima at -3 and 2
- (C) Local maxima at $-1 \mbox{ and } 3 \mbox{ and local minimum at } 2$
- (D) Local maxima at -3 and 2 and local minimum at -1
- (E) None of the above

- 8. Referring to the same graph of the derivative in the question above, at approximately what x-value(s) is f(x) concave up?
 - (A) x < -1 and x > 1.5
 - (B) -1 < x < 2
 - (C) -2.1 < x < .8 and x > 2.6
 - (D) $-\infty < x < \infty$
 - (E) We cannot determine concavity of f(x) from the graph of f'(x).

9. Below is the graph of the second derivative f''(x) of a function f(x) on the interval [-1,3]. Which of the following statements must be true?



- (A) The function f(x) is concave up when -1 < x < 0.
- (B) The derivative f'(x) is decreasing when 0 < x < 3.
- (C) The function f(x) has a point of inflection at x = 0.
- (D) The derivative f'(x) has a local maximum at x = 0.
- (E) All of the above.

10. On which interval(s) is the function $f(x) = x^4 - 6x^3 + 12x^2 + 1$ concave down?

(A)
$$(-\infty, 1)$$
 only (B) $(1, 2)$ only (C) $(-\infty, -1)$ and $(2, \infty)$
(D) $(2, \infty)$ only (E) $(-\infty, 1)$ and $(2, \infty)$

11. Evaluate the following limit:

(A)
$$+\infty$$
 (B) $-\infty$ (C) 0
(D) $1/2$ (E) $-1/2$

12. Evaluate the following limit:

$$\lim_{x \to \pi/2} \frac{1 - \sin x}{\cos x}.$$

(A) 0 (B) 1 (C)
$$+\infty$$

(D) -1 (E) $1/2$

13. Determine the number of inflection points of the graph of $y = x^2 - \frac{1}{x}$ on its domain.

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

- 14. Find two positive numbers x and y satisfying y + 2x = 80 whose product is a maximum.
 - (A) 24, 32 (B) 26, 28 (C) 20, 40
 - (D) 26, 27 (E) None of the above (E) = 1000

15. A box with square base and open top must have a volume of 4000 cm³. If the cost of the material used is $1/cm^2$, then what is the smallest possible cost of the box?

(A) \$500
(B) \$600
(C) \$1000
(D) \$1200
(E) \$2000

16. Which of the following choices for the function f(x) would yield a situation in which the limit could be evaluated using l'Hopital's Rule?

$$\lim_{x \to \infty} \frac{f(x)}{x^2}$$

- (A) $\sin(x)$ (B) e^{-x} (C) $\cos(x)$
- (D) $\ln(x)$ (E) All of the above

17. A particle moves along a line with velocity $v(t) = t - \ln(t^2 + 1)$. What is its maximum velocity on the interval $0 \le t \le 2$?

(A)
$$1 - \ln 2$$
 (B) 0 (C) $2 - \ln 5$

(D) $\ln 2 - 1$ (E) $\ln 5 - 2$

- 18. If f(1) = 9 and $f'(x) \ge 3$ for all x in the interval [1,4], then what is the smallest possible value of f(4)?
 - (A) 19 (B) 18 (C) 12(D) Cannot be determined (E) None of the above

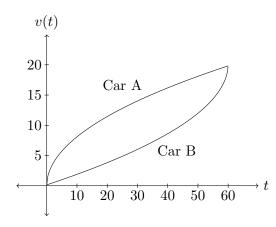
19. Using the table below, identify all critical numbers for the twice differentiable function f(x) and determine if each critical value is a local maximum, local minimum, or cannot be determined (CBD).

x	-7	-3	-2	0	1	4	6
f(x)	0	0	3	-10	0	25	2
f'(x)	-4	0	0	0	9	0	2
f''(x)	5	1	0	8	-7	-3	0

- (A) Local max at 1 and 4; local min at -7, -3, and 0; CBD at -2 and 6
- (B) Local max at -3 and 0; local min at 4; CBD at -2
- (C) Local max at 4; local min at -3 and 0; CBD at -2
- (D) Local max at 4; local min at 0 $\,$
- (E) Local max at -7, -3, and 0; local min at 1 and 4; CBD at -2 and 6

- 20. A certain function f(x) satisfies f''(x) = 2 3x with f'(0) = -1 and f(0) = 1. Compute f(2).
 - (A) 0 (B) 1 (C) -2
 - (D) 2 (E) -1

21. Below is the graph of the velocity (measured in ft/sec) over the interval $0 \le t \le 60$ for two cars, Car A and Car B. How do the distances traveled by each compare over this interval?



- (A) Car A travelled farther because its speed was increasing the whole time
- (B) Car B travelled farther because its speed was increasing the whole time
- (C) Car A travelled farther because the area under its velocity curve is larger than B's
- (D) Car A and Car B travelled the same distance
- (E) Car B travelled farther because it was moving faster at the end

22. Find f(x) if $f'(x) = 3x^2 + \frac{2}{x}$ for x > 0 and f(1) = 3. (A) $x^3 + 2 \ln x$ (B) $x^3 - \frac{2}{x^2}$ (C) $x^3 - \frac{2}{x^2} + 4$ (D) $x^3 + 2 \ln x + 2$ (E) $x^3 + 2 \ln x + 3$

23. If we use a right endpoint approximation with four subintervals (i.e., R_4), then what is the resulting approximation for the area under the curve y = f(x) from x = 0 to x = 4?

