1. What is the recursion from Newton's method for solving $x^2 - 7 = 0$?

(A)
$$x_{n+1} = (x_n^3 - 9x_n)/(x_n^2 - 7)$$
 (B) $x_{n+1} = (x_n^2 + 7)/(2x_n)$ (C) $x_{n+1} = (x_n^2 - 7)/(2x_n)$
(D) $x_{n+1} = (3x_n^2 + 7)/(2x_n)$ (E) $x_{n+1} = (3x_n^2 - 7)/(2x_n)$
 $\chi_{n+1} = \chi_n - \frac{f(\chi_n)}{f'(\chi_n)}$ $\chi_{n+1} = \chi_n - \frac{\chi_n^2 - 7}{2\chi_n}$
 $f(\chi_n) = \chi_n^2 - 7$ $= \frac{2\chi_n^2 - (\chi_n^2 - 7)}{2\chi_n}$
 $f'(\chi_n) = -2\chi_n$ $= \chi_n^2 + 7$

2. Let $f(x) = x^2 - 10$. If $x_1 = 3$ in Newton's method to solve f(x) = 0, determine x_2 .

(A)
$$1/2$$
 (B) $19/6$ (C) $15/4$
(D) $12/7$ (E) $17/6$
 $f(X_1) = f(3) = 3^2 - 10 = -1$
 $f'(X) = 2x \Rightarrow f'(X_1) = f'(3) = 23 = 6$
 $X_2 = X_1 - \frac{f(X_1)}{f'(X_1)} = 3 - \frac{f(3)}{f'(3)} = 3 - \frac{(-1)}{6}$
 $= \frac{18}{6} + \frac{1}{6} = \frac{19}{6}$

3. Which of the following is the absolute maximum value of the function $f(x) = \frac{x}{x^2 + 4}$ on the interval [0,4]?

(A)
$$\frac{1}{8}$$
 (B) $\frac{1}{5}$ (C) $\frac{1}{4}$ $f'(\chi) = \frac{1}{(\chi^2 + 4)^2}$
(D) $\frac{1}{2}$ (E) 1 $f'(\chi) = \frac{1}{(\chi^2 + 4)^2}$
(D) $\frac{1}{2}$ (E) 1 $f'(\chi) = \frac{1}{(\chi^2 + 4)^2}$
(D) $\frac{1}{2}$ (E) 1 $f'(\chi) = \frac{1}{(\chi^2 + 4)^2}$
(D) $\frac{1}{2}$ (E) 1 $f'(\chi) = \frac{1}{(\chi^2 + 4)^2}$
(D) $\frac{1}{2}$ (E) 1 $f'(\chi) = \frac{1}{(\chi^2 + 4)^2}$
(D) $\frac{1}{2}$ (E) 1 $f'(\chi) = \frac{1}{(\chi^2 + 4)^2}$
(D) $\frac{1}{2}$ (E) 1 $f'(\chi) = \frac{1}{(\chi^2 + 4)^2}$
(D) $\frac{1}{2}$ (E) 1 $f'(\chi) = \frac{1}{(\chi^2 + 4)^2}$
(D) $\frac{1}{2}$ (E) 1 $f'(\chi) = \frac{1}{(\chi^2 + 4)^2}$
(D) $\frac{1}{2}$ (E) 1 $f'(\chi) = \frac{1}{(\chi^2 + 4)^2}$
(D) $\frac{1}{2}$ (E) 1 $f'(\chi) = \frac{1}{(\chi^2 + 4)^2}$
(D) $\frac{1}{2}$ (E) 1 $f'(\chi) = \frac{1}{(\chi^2 + 4)^2}$
(D) $\frac{1}{2}$ (E) 1 $f'(\chi) = \frac{1}{(\chi^2 + 4)^2}$
(D) $\frac{1}{2}$ (E) 1 $f'(\chi) = \frac{1}{(\chi^2 + 4)^2}$
(D) $\frac{1}{2}$ (E) 1 $f'(\chi) = \frac{1}{(\chi^2 + 4)^2}$
(D) $\frac{1}{2}$ (E) 1 $f'(\chi) = \frac{1}{(\chi^2 + 4)^2}$
(D) $\frac{1}{2}$ (E) 1 $f'(\chi) = \frac{1}{(\chi^2 + 4)^2}$
(D) $\frac{1}{2}$ (E) 1 $f'(\chi) = \frac{1}{(\chi^2 + 4)^2}$
(D) $\frac{1}{2}$ (E) 1 $f'(\chi) = \frac{1}{(\chi^2 + 4)^2}$
(Aenom. naur zero) $f'(\chi) = \frac{1}{(\chi$

4. Find all value(s) of the number c that satisfy the conclusion of the Mean Value Theorem for the function $f(x) = x^3$ on the interval [0,3], if any exist.

(A) 9 (B)
$$\sqrt{27}$$
 (C) $\sqrt{3}$ (D) 3
(E) No such value of c exists. So Mut explices
 $f'(c) = \frac{f(3) - f(a)}{3 - 0}$ (E) No such value of c exists. So Mut explices
 $3c^2 = \frac{3^2 - 0^2}{3 - 0} \rightarrow 3c^2 = \frac{27}{3} = 9$
 $\Rightarrow c^2 = 3$
 $c = \pm \sqrt{3}$
 $c = -\sqrt{3}$ Not in $(0,3)$, $52 = c = \sqrt{3}$

5. Find all value(s) of x where $f(x) = 2x^3 + 3x^2 - 12x$ has a local minimum.

(A) 1 (B) -2 (C) -2, 1
$$f'(x) = 6x + 6x - 12$$

(D) -2, $\frac{1}{2}$ (E) -2, $\frac{1}{2}$, 1 $= 6(x^2 + x - 2)$
 $z^{rd} \frac{deriv. + est}{f''(x) = 12 \times 16}$
 $f''(x) = 12 \times 16$
 $f''(-2) = -24 + 6 = -18$ $f''(x) = 12 \times 16$
 $f''(-2) = -24 + 6 = -18$ $f''(x) = 12 \times 16$

6. How many inflection points does the graph of $f(x) = x^4 - 8x^2 - 7$ have?

2 Page 2 of 10

7. Below is the graph of the *derivative* f'(x) of a function f(x). At what x-value(s) does f(x) have a local maximum or local minimum?

(E) We cannot determine concavity of f(x) from the graph of f'(x).

9. Below is the graph of the second derivative f''(x) of a function f(x) on the interval [-1,3]. Which of the following statements must be true?

(A) The function f(x) is concave up when -1 < x < 0. f''>0 have $\sqrt{(B)}$ (B) The derivative f'(x) is decreasing when 0 < x < 3. f'' < 0 have $\sqrt{(C)}$ (C) The function f(x) has a point of inflection at x = 0. f'' (hanges $\sqrt{(D)}$ the derivative f'(x) has a local maximum at x = 0. derivative of f' changes $\sqrt{(E)}$ All of the above. (E) All of the above.

10. On which interval(s) is the function $f(x) = x^4 - 6x^3 + 12x^2 + 1$ concave down? (A) $(-\infty, 1)$ only (B) (1, 2) only (C) $(-\infty, -1)$ and $(2, \infty)$ (D) $(2, \infty)$ only (E) $(-\infty, 1)$ and $(2, \infty)$ $f'(x) = 4x^3 - 18x^2 + 24x$ $F''(x) = 12x^2 - 36x + 24 = 12(x^2 - 3x + 2) = 12(x - 2)(x - 1) = 0$ (Birst) x = 1, 2 x = 1, 2Page 4 of 10 Conc, x = 1, 2 11. Evaluate the following limit:

.

12. Evaluate the following limit:

the following mint:

$$\lim_{x \to \pi/2} \frac{1 - \sin x}{\cos x} = \bigcup_{0}^{\infty} \bigcup_{0}^{\infty} \text{ Ase } U' \text{ Hospital}_{S}$$

$$(D) -1 \quad (E) 1/2 \qquad X \to \overline{Z} \quad OSX \qquad Hospital_{S}$$

$$= \underbrace{-0}_{-1}^{0} = \underbrace{0}_{-1}^{0}$$

13. Determine the number of inflection points of the graph of $y = x^2 - \frac{1}{x}$ on its domain.

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

$$\gamma' = 2 + \frac{1}{2} + \frac{1}$$

14. Find two positive numbers x and y satisfying y + 2x = 80 whose product is a maximum.

- (A) 24, 32 (B) 26, 28 (C) 20, 40
- (D) 26, 27 (E) None of the above Maxi, mize P = Xy with $Y + 2x = 80 \Rightarrow Y = 80 - 2x$ $P(x) = x(80 - 2x) = 80x - 2 + 2 \Rightarrow 7 = 80 - 2x$ $P'(x) = 80 = 4 \times 1 = 80 - 2(120) = 40$ $x = 20 \Rightarrow 7 = 80 - 2(120) = 40$ $x = 20 \Rightarrow 7 = 80 - 2(120) = 40$ $x = 20 \Rightarrow 7 = 80 - 2(120) = 40$
 - 15. A box with square base and open top must have a volume of 4000 cm³. If the cost of the material used is $1/cm^2$, then what is the smallest possible cost of the box?

16. Which of the following choices for the function f(x) would yield a situation in which the limit could be evaluated using l'Hopital's Rule?

$$\lim_{x \to \infty} \frac{f(x)}{x^2} = \frac{(?)^{1}}{6} \rightarrow \frac{1}{2} \lim_{x \to \infty} f(x) = \pm \infty$$

$$(A) \sin(x) \quad (B) e^{-x} \quad (C) \cos(x)$$

$$(E) \text{ All of the above}$$

$$(E) \text{ All of the ab$$

17. A particle moves along a line with velocity $v(t) = t - \ln(t^2 + 1)$. What is its maximum velocity on the interval $0 \le t \le 2$?

(A)
$$1 - \ln 2$$
 (B) 0 $(C) 2 - \ln 5$
(D) $\ln 2 - 1$ (E) $\ln 5 - 2$
 $V'(t) = 1 - \frac{2t}{t^2 + 1} = 0$ $(D_{N}E : hever sincle t^2 + 1 > 0 always)$
 $1 - \frac{2t}{t^2 + 1}$ MAX Out of
 $t^2 + 1 = 2t$ $V(0), v(1), v(2);$
 $t^2 - 2t + 1 = 0$ $(V(1) = 1 - \ln(1) = 0$
 $(t - 1)^2 = 0$ $(V(2) = 2 - \ln(5) > 0$
which is large?
 $V(1) = 1 - \ln(5) = 0$
 $V(2) = 2 - \ln(5) = 0$
 $V(1) = 1 - \ln(5) = 0$
 $V(2) = 2 - \ln(5) = 0$
 $V(1) = 1 - \ln(5) = 0$
 $V(2) = 2 - \ln(5) = 0$
 $V(3) = 0$
 $V(1) = 1 - \ln(5) = 0$
 $V(2) = 2 - \ln(5) = 0$
 $V(1) = 1 - \ln(5) = 0$
 $V(2) = 2 - \ln(5) = 0$
 $V(2) = 2 - \ln(5) = 0$
 $V(1) = 1 - \ln(5) = 0$
 $V(2) = 2 - \ln(5) = 0$
 $V(1) = 1 - \ln(5) = 0$
 $V(1) = 1 - \ln(5) = 0$
 $V(2) = 2 - \ln(5) = 0$
 $V(1) = 1 - \ln(5) = 0$
 $V(1) = 1 - \ln(5) = 0$
 $V(2) = 2 - \ln(5) = 0$
 $V(3) = 1 - \ln(5) = 0$
 $V(1) = 1 - \ln(5) = 0$
 $V(2) = 1 - \ln(5) = 0$
 $V(3) = 1 - \ln(5) = 0$
 $V(3) = 1 - \ln(5) = 0$
 $V(1) = 1 - \ln(5) = 0$
 $V(2) = 1 - \ln(5) = 0$
 $V(3) = 1 - \ln(5) = 0$
 $V(1) = 1 - \ln(5) = 0$
 $V(2) = 1 - \ln(5) = 0$
 $V(3) = 1 - \ln(5)$

Math 1131

18. If f(1) = 9 and $f'(x) \ge 3$ for all x in the interval [1, 4], then what is the smallest possible value of f(4)?

(A) 19 (B) 18 (C) 12
(D) Cannot be determined (E) None of the above
Wing mean Value theorem;
$$f^{1}(c) = f(\underline{4}) - f(\underline{1})$$
 for
some c in $c_{1}, 4_{1}, s_{2}$;
 $3f'(c) = f(4) - f(\underline{1}) \rightarrow f(4) = f(1) + 3f'(c)$
 $= 9 + 3f'(c) = 9 + 3(3) = 18$

19. Using the table below, identify all critical numbers for the twice differentiable function f(x) and determine if each critical value is a local maximum, local minimum, or cannot be determined (CBD).

	x	-7	-3	-2	0	1	4	6	crifts, where f=0.	
	f(x)	0	0	3	-10	0	25	2	X=-3,-2,0,4	
	f'(x)	-4	0	0	0	9	0	2		
	f''(x)	5	1		8	-7	$\overline{3}$	0		
min CDP Fixo max										
(A) Level may at 1 and 4 level min at 7 2 and 0. CPD at 2 and 6										
(A) Local max at 1 and 4; local min at -7 , -3 , and 0; CBD at -2 and 0										
(B) Loc	(B) Local max at -3 and 0; local min at 4; CBD at -2									

(C) Local max at 4; local min at -3 and 0; CBD at -2(D) Local max at 4; local min at 0

(E) Local max at -7, -3, and 0; local min at 1 and 4; CBD at -2 and 6

20. A certain function f(x) satisfies f''(x) = 2 - 3x with f'(0) = -1 and f(0) = 1. Compute f(2).

(A) 0 (B) 1 (C) -2
(D) 2
$$f(z) = 1$$

 $f'(x) = 2x - \frac{1}{2}x^{2} + C$, $f'(0) = C = -1 \rightarrow f'(x) = 2x - \frac{3}{2}x^{2} - 1$
 $f(x) = x^{2} - \frac{1}{2}x^{3} - x + D$, $f(0) = D = 1 \rightarrow f(x) = x^{2} - \frac{1}{2}x^{3} - x + 1$
 $\longrightarrow f(z) = 4 - \frac{1}{2} \cdot 8 - 2 + 1$
 $= -\frac{1}{2}$

21. Below is the graph of the velocity (measured in ft/sec) over the interval $0 \le t \le 60$ for two cars, Car A and Car B. How do the distances traveled by each compare over this interval?

(A) Car A travelled farther because its speed was increasing the whole time

(B) Car B travelled farther because its speed was increasing the whole time

- (C) Car A travelled farther because the area under its velocity curve is larger than B's
- (D) Car A and Car B travelled the same distance
- (E) Car B travelled farther because it was moving faster at the end

22. Find
$$f(x)$$
 if $f'(x) = 3x^2 + \frac{2}{x}$ for $x > 0$ and $f(1) = 3$.
(A) $x^3 + 2\ln x$ (B) $x^3 - \frac{2}{x^2}$ (C) $x^3 - \frac{2}{x^2} + 4$
(E) $x^3 + 2\ln x + 3$
(E) $x^3 + 2\ln x + 4$
(E) $x^3 + 2\ln$

23. If we use a right endpoint approximation with four subintervals (i.e., R_4), then what is the resulting approximation for the area under the curve y = f(x) from x = 0 to x = 4?

