Math 1131 Week 8 Worksheet

Name: \qquad
Discussion Section: \qquad
Solutions should show all of your work, not just a single final answer.

4.1: Maximum and Minimum Values

1. For the following functions, find all critical numbers exactly.
(a) $f(x)=x^{5}-2 x^{3}$
(b) $f(x)=x-2 \sin x$ for $-2 \pi<x<2 \pi$
(c) $f(x)=e^{-x}-e^{-3 x}$ for $x>0$
2. Use calculus to find the absolute maximum and minimum values of the following functions on the given intervals. Give your answers exactly and show supporting work.
(a) $f(x)=x^{3}-2 x^{2}+x+1$ on $[0,1]$
(b) $f(x)=x^{4}-2 x^{2}+4$ on $[0,2]$
(c) $f(x)=(7 x-1) e^{-2 x}$ on $[0,1]$
3. Below is the graph of $f(x)=x^{4}-5 x^{3}+6 x^{2}+2$. On the interval $[0,3]$ determine the maximum and minimum value of the slope of the graph, i.e., the maximum and minimum values of $g(x)=f^{\prime}(x)$.

4. T / F (with justification) If $f(x)$ is a differentiable function on (a, b) and $f(x)$ has a local maximum or minimum value at $x=c$ in (a, b) then $f^{\prime}(c)=0$.
5. T/F (with justification) If $f(x)$ is a differentiable function on (a, b) and $f^{\prime}(c)=0$ for a number c in (a, b) then $f(x)$ has a local maximum or minimum value at $x=c$.

4.2: Mean Value Theorem

6. Find every number c that satisfies the conclusion of the Mean Value Theorem for the function $f(x)=x^{3}-4 x^{2}-5$ on the interval $[1,2]$.
7. T/F (with justification) The function $1-\frac{1}{x^{4}}$ satisfies the hypotheses of Rolle's Theorem on the interval $[-1,1]$.
8. T/F (with justification) The graph of the semicircle on $[-1,1]$ below fits the hypotheses of the Mean Value Theorem.

Answers to Selected Problems:

1. (a) 0 and $\pm \sqrt{6 / 5}$
(b) $x= \pm \pi / 3$ and $x= \pm 5 \pi / 3$
(c) $x=\frac{1}{2} \ln 3$
2. (a) On $[0,1]$ the absolute maximum value of $f(x)$ is $31 / 27$ and the absolute minimum value of $f(x)$ is 1 .
(b) On $[0,2]$ the absolute maximum value of $f(x)$ is 12 and the absolute minimum value of $f(x)$ is 3 .
(c) The absolute maximum value of $f(x)$ is $(7 / 2) e^{-9 / 7}$, and the absolute minimum value of $f(x)$ is -1 .
3. $f^{\prime}(x)=g(x)$ has maximum value 9 and minimum value -4 .
4. True
5. False
6. $c=5 / 3$
7. False
8. True
