Name: \qquad
Discussion Section: \qquad
Solutions should show all of your work, not just a single final answer.

3.1: Derivatives of Polynomials and Exponential Functions

1. Use differentiation rules from Section 3.1 (not other methods) to compute the derivative of the following functions.
(a) $f(x)=7 x^{3}-5 x+8$
(b) $f(x)=e^{x}+x^{e}$
(c) $f(x)=3 x+\sqrt{3 x}$
(d) $f(x)=\sqrt[4]{x}-4 e^{x}$
(e) $f(x)=\frac{x^{2}+4 x+3}{\sqrt{x}}$
(f) $f(x)=\frac{12}{x^{5}}-\frac{7}{\sqrt[5]{x}}$
2. Use differentiation rules to find the equation of the tangent line to $y=x^{2}-x^{4}$ (see below) at the point $(1,0)$.

3. Use differentiation rules to find the values of a and b that make the function

$$
f(x)= \begin{cases}x^{2} & \text { if } x \leq 2 \\ a x^{3}+b x & \text { if } x>2\end{cases}
$$

differentiable at $x=2$.
4. Find all points $(c, f(c))$ on the graph of $f(x)=x^{3}-3 x^{2}$ where the tangent line has slope 9.
5. T/F (with justification) If $f(x)=\sqrt{7}$ for all x, then $f^{\prime}(x)=\frac{1}{2 \sqrt{7}}$ for all x.

3.2: The Product and Quotient Rules

6. Compute the derivative of each function below using the methods from Sections 3.1 and 3.2 (not other methods).
(a) $f(x)=\frac{x}{x+3}$ (simplify numerator in final answer)
(b) $f(x)=\frac{e^{x}}{1+e^{x}}$ (simplify numerator in final answer)
(c) $f(x)=\sqrt{x} e^{x}$
(d) $f(x)=\frac{e^{x}}{x^{n}}$ for constant n, in two ways: (i) quotient rule and (ii) product rule
(e) $f(x)=\frac{1}{x}+\frac{1}{1-x}$ (in final answer, use a common denominator and simplify numerator)
7. In the function $h(x)$ below, defined in terms of $f(x)$ and $g(x)$, determine $h^{\prime}(2)$ in each case if $f(2)=3, g(2)=4, f^{\prime}(2)=1$, and $g^{\prime}(2)=-5$.
(a) $h(x)=2 f(x)+5 g(x)$
(b) $h(x)=f(x) g(x)$
(c) $h(x)=\frac{f(x)}{g(x)}$
(d) $h(x)=\frac{g(x)}{f(x)+2}$

Answers to selected problems

1. (a) $f^{\prime}(x)=21 x^{2}-5$
(b) $f^{\prime}(x)=e^{x}+e x^{e-1}$
(c) $f^{\prime}(x)=3+\frac{\sqrt{3}}{2 \sqrt{x}}$
(d) $f^{\prime}(x)=\frac{1}{4 x^{3 / 4}}-4 e^{x}$.
(e) $f^{\prime}(x)=\frac{3}{2} \sqrt{x}+\frac{2}{\sqrt{x}}-\frac{3}{2 x^{3 / 2}}$.
(f) $f^{\prime}(x)=-\frac{60}{x^{6}}+\frac{7}{5 x^{6 / 5}}$.
2. $y=-2 x+2$
3. $a=1 / 4, b=1$.
4. $(-1, f(-1))=(-1,-4)$ and $(3, f(3))=(3,0)$.
5. False
6. (a) $\frac{3}{(x+3)^{2}}$
(b) $\frac{e^{x}}{\left(1+e^{x}\right)^{2}}$
(c) $\frac{(2 x+1) e^{x}}{2 \sqrt{x}}$
(d) (i): $\frac{x^{n} e^{x}-e^{x} n x^{n-1}}{x^{2 n}}$
(ii): $e^{x} x^{-n}-n e^{x} x^{-n-1}$ (show why these are the same!)
(e) $\frac{2 x-1}{x^{2}(1-x)^{2}}$
7. (a) -23
(b) -11
(c) $\frac{19}{16}$
(d) $-\frac{29}{25}$
