Name: \qquad
Discussion Section: \qquad
Solutions should show all of your work, not just a single final answer.

2.7: Derivatives and Rates of Change

1. The function $f(x)=\frac{1}{x+1}$ is graphed below. Find $f^{\prime}(1)$ using the limit definition of the derivative (no credit for using any other method) and then find the equation of the tangent line to the graph at $x=1$.

2. If a function $f(x)$ has $f(3)=2$ and $f^{\prime}(3)=4$, work out an equation of the tangent line to the graph of $y=f(x)$ at the point $(3, f(3))$.
3. Below is the graph of a function $f(x)$ that's periodic: there's a $T>0$, called the period, such that $f(x+T)=f(x)$ for all x. Explain why the derivative $f^{\prime}(x)$ is also periodic with period T in two different ways.

(a) using tangent lines to the graph of the function
(b) using the limit definition of the derivative

2.8: The Derivative as a Function

4. The graph of $y=f(x)$ is pictured below.

(a) Compute each derivative below, explaining your calculations. If a derivative does not exist, write DNE.
(a) $f^{\prime}(-2)$
(b) $f^{\prime}(1)$
(c) $f^{\prime}(-1)$
(d) $f^{\prime}(2)$
(e) $f^{\prime}(0)$
(f) $f^{\prime}(3)$
(g) Sketch a graph of the derivative $f^{\prime}(x)$, leaving blank spots where it does not exist.
5. Find the derivative of $f(x)=\frac{8}{x^{2}}$ using the limit definition of the derivative (no credit for using any other method). Hint: Look at 3b on the Week 2 Worksheet.
6. T/F (with justification) A function that is continuous at a is also differentiable at a.
7. T / F (with justification) If $f^{\prime}(2)$ exists, then $\lim _{x \rightarrow 2} f(x)=f(2)$.

Answers to Selected Worksheet Problems

1. $f^{\prime}(1)=-\frac{1}{4}, y=-\frac{1}{4} x+\frac{3}{4}$.
2. $y=4 x-10$.
3. Contact us with your questions!
4. (a) (i): $f^{\prime}(-2)=0$.
(ii): $f^{\prime}(1) \mathrm{DNE}$.
(iii): $f^{\prime}(-1)$ DNE.
(iv): $f^{\prime}(2)=-1$.
(v): $f^{\prime}(0)=2$
(vi): $f^{\prime}(3)=-1$.
(b) Based on the work in (a),

$$
f^{\prime}(x)=\left\{\begin{array}{l}
0, \text { if } x<-1 \\
2, \text { if }-1<x<1 \\
-1, \text { if } x>1
\end{array}\right.
$$

Below is the graph, with discontinuities at $x= \pm 1$.

5. $f^{\prime}(x)=-16 / x^{3}$.
6. False
7. True

