Name: \qquad
Discussion Section: \qquad
Solutions should show all of your work, not just a single final answer.

2.3: Calculating Limits Using the Limit Laws

1. Let

$$
f(x)= \begin{cases}x^{2}+1 & \text { if } x<1 \\ 4 & \text { if } x=1 \\ x+2 & \text { if } 1<x \leq 2 \\ 6-x & \text { if } x>2\end{cases}
$$

(a) Sketch the graph of $y=f(x)$ for $-1 \leq x \leq 4$.
(b) Evaluate the following limits if they exist. (If a limit does not exist, write DNE.)
(i) $\lim _{x \rightarrow 1^{-}} f(x)$
(iv) $\lim _{x \rightarrow 2^{-}} f(x)$
(ii) $\lim _{x \rightarrow 1^{+}} f(x)$
(v) $\lim _{x \rightarrow 2^{+}} f(x)$
(iii) $\lim _{x \rightarrow 1} f(x)$
(vi) $\lim _{x \rightarrow 2} f(x)$
2. Evaluate the following limits exactly using algebra and limit laws (some limits may be DNE).
(a) $\lim _{x \rightarrow 2} \frac{x^{3}-2}{2 x^{2}-3 x+2}$
(b) $\lim _{x \rightarrow 9} \frac{x-9}{\sqrt{x}-3}$
(c) $\lim _{x \rightarrow 3} \frac{\sqrt{x^{2}+40}-7}{x-3}$
(d) $\lim _{x \rightarrow-2} \sqrt{x^{4}+3 x+6}$
(e) $\lim _{x \rightarrow 1} \frac{x^{2}+4 x}{x^{2}+3 x-4}$
(f) $\lim _{x \rightarrow 1} \frac{\left(x^{2}+x\right)^{2}-4}{x^{2}+x-2}$
3. Evaluate the following limits using algebra and limit laws (some limits may be DNE). Note that a represents a constant, and answers may be in terms of a.
(a) $\lim _{t \rightarrow 0} \frac{\sqrt{a+t}-\sqrt{a-t}}{t}$ for $a>0$
(b) $\lim _{h \rightarrow 0} \frac{1 /(a+h)^{2}-1 / a^{2}}{h}$ for $a \neq 0$
4. T / F (with justification) If $\lim _{x \rightarrow 2} g(x)=0$ and $\lim _{x \rightarrow 2} h(x)=0$ then $\lim _{x \rightarrow 2} \frac{g(x)}{h(x)}$ does not exist.

2.5: Continuity

5. Let

$$
f(x)= \begin{cases}x^{2}+x & \text { if } x<1 \\ a & \text { if } x=1 \\ x-1 & \text { if } x>1\end{cases}
$$

(a) Determine the value of a for which $f(x)$ is continuous from the left at 1 .
(b) Determine the value of a for which $f(x)$ is continuous from the right at 1 .
(c) Is there a value of a for which $f(x)$ is continuous at 1? Explain.
6. Use the intermediate value theorem to show that there is a solution to $x-\sqrt{x}-\ln x=0$ on the interval $(2,3)$. Clearly explain your reasoning.
7. Let

$$
f(x)= \begin{cases}2-k x & \text { if } x<1 \\ k+x & \text { if } x>1\end{cases}
$$

with the value of $f(1)$ to be determined.
(a) Compute $\lim _{x \rightarrow 1^{-}} f(x)$ in terms of k.
(b) Compute $\lim _{x \rightarrow 1^{+}} f(x)$ in terms of k.
(c) Find the values of k and $f(1)$ that make $f(x)$ continuous at $x=1$.
(d) Using the choice of k and $f(1)$ in part (c), make a graph of $y=f(x)$ for $0 \leq x \leq 2$.
8. The function $f(x)$ is continous on the interval $(-3,4)$. If we know that $f(-1)=4$ and $f(3)=7$, what can we say about the outputs of $f(x)$, i.e. what values does f definitely take and/or not take?
9. T/F (with justification) The function

$$
f(x)= \begin{cases}\sin x & \text { if } x \leq 0 \\ 1+\cos x & \text { if } x>0\end{cases}
$$

has a jump discontinuity at $x=0$.
10. T/F (with justification) A function that is continuous at a point has to be defined at the point.
11. T/F (with justification) A function that is discontinuous at a point can't be defined at the point.

2.6: Limits at Infinity and Horizontal Asymptotes

12. Find the limit in each case or explain why it does not exist (and if it is $\pm \infty$).
(a) $\lim _{x \rightarrow \infty} \frac{2 x+3}{6 x-7}$
(b) $\lim _{x \rightarrow-\infty} \frac{x^{3}}{\sqrt{6 x^{4}-1}}$
(c) $\lim _{x \rightarrow \infty} \sqrt{x^{2}+3 x}-x$
(d) $\lim _{x \rightarrow \infty} \frac{100000 x}{x^{3}+x}$
(e) $\lim _{x \rightarrow \infty} \frac{\sqrt{16 x^{4}+7 x}}{8 x^{2}+5}$
(f) $\lim _{x \rightarrow-\infty} \frac{e^{3 x}-e^{-3 x}}{e^{3 x}+e^{-3 x}}$
(g) $\lim _{x \rightarrow \infty} \sqrt{x}+\sin x$
(h) $\lim _{x \rightarrow \infty} \frac{1}{x}+\sin x$
13. Let $f(x)=\frac{\sqrt{4 x^{6}+5}}{x^{3}-1}$.
(a) Compute $\lim _{x \rightarrow \infty} f(x)$.
(b) Compute $\lim _{x \rightarrow-\infty} f(x)$.
(c) What are the horizontal asymptotes of the graph of $y=f(x)$?
(d) What is the vertical asymptote of the graph of $y=f(x)$?
14. T / F (with justification) The graph of the function $y(x)=3+6 e^{-k x}$, with k a positive constant, has a horizontal asymptote $y=6$.
15. T / F (with justification) If the continuous function $f(x)$ has domain $(-\infty,+\infty)$, then either $\lim _{x \rightarrow \infty} f(x)$ exists or $\lim _{x \rightarrow \infty} f(x)$ is $\pm \infty$.

Answers to Selected Worksheet Problems

1. (a) Here is a graph of $y=f(x)$ for $-1 \leq x \leq 4$.

(b) From the graph we can evaluate the limits:
(i) 2
(ii) 3
(iii) DNE
(iv) 4
(v) 4
(vi) 4
2. (a) 1.5
(b) 6
(c) $3 / 7$
(d) 4
(e) DNE
(f) 4
3. (a) $1 / \sqrt{a}$
(b) $-2 / a^{3}$
4. False
5. (a) $a=2$
(b) $a=0$
(c) No
6. Contact us with questions!
7. (a) $2-k$.
(b) $k+1$.
(c) $k=1 / 2, f(1)=1.5$.
(d)

8. $f(x)$ must take on every value between 4 and 7 when x is between -1 and 3 . It may or may not also take on values ≤ 4 and ≥ 7.
9. True
10. True
11. False
12. (a) $\frac{1}{3}$
(b) $-\infty$
(c) $\frac{3}{2}$
(d) 0
(e) $\frac{1}{2}$
(f) -1
(g) ∞
(h) DNE
13. (a) 2
(b) -2
(c) $y=2$ and $y=-2$
(d) $x=1$
14. False
15. False
