Name: \qquad
Discussion Section: \qquad
Solutions should show all of your work, not just a single final answer.

4.7: Optimization Problems

1. A closed box (top, bottom, and all four sides) needs to be constructed to have a volume of $9 \mathrm{~m}^{3}$ and a base whose width is twice its length. See Figure 1.

Figure 1: A box
Use calculus to determine the dimensions (length, width, height) of such a box that uses the least amount of material. Justify why your answer corresponds to a minimum, not a maximum.
2. We want to find the points on $y=x^{2}$ that are closest to $(0,3)$.

Figure 2: Distance to $(0,3)$ on $y=x^{2}$.
(a) For each point $\left(x, x^{2}\right)$ on the parabola, find a formula for its distance to $(0,3)$. Call this distance $D(x)$. (See Figure 5.)
(b) Let $f(x)=D(x)^{2}$, which is the squared distance between $\left(x, x^{2}\right)$ and (0,3). Finding where $D(x)$ is minimal is the same as finding where $f(x)$ is minimal. Determine all x where $f(x)$ has an absolute minimum. The points $\left(x, x^{2}\right)$ for such x are the closest points to $(0,3)$ on $y=x^{2}$.
3. Three line segments of length 1 are joined together at endpoints to form a base and the legs of an isosceles trapezoid, as in Figure 3. Let θ in $(0, \pi / 2)$ be the common angle measurement between the legs and the line passing through the base of length 1 . We want to find the angle θ that maximizes the area of the trapezoid.

Figure 3: An isosceles trapezoid with base and legs of length 1.
(a) Compute the area $A(\theta)$ of the trapezoid. The general area formula for a trapezoid is $\frac{1}{2} h\left(b_{1}+b_{2}\right)$, where h is the height and b_{1} and b_{2} are the lengths of the bases. (Hint: Break up the trapezoid into a rectangle with two right triangles at both ends. Use trigonometry to compute the height and the length of the longer base in terms of θ.)
(b) Find all solutions to $A^{\prime}(\theta)=0$ with $0<\theta<\pi / 2$. (The answer is not $\pi / 4=45^{\circ}$.)
(c) Verify that the area $A(\theta)$ is a maximum, not a minimum, at the angle found in part (b) and compute this maximum area.

4.8: Newton's Method

4. Apply Newton's method to estimate the solution of $x^{3}-x-1=0$ by taking $x_{1}=1$ and finding the least n such that x_{n} and x_{n+1} agree to three digits after the decimal point.
5. The number π is a solution of $\sin x=0$ close to 3 (see Figure 4). You will use Newton's method for $\sin x=0$ to create numerical estimates for π.

Figure 4: Graph of $y=\sin x$.
(a) Write out the recursion for Newton's method used to solve $\sin x=0$.
(b) Using Newton's method for $\sin x=0$ with $x_{1}=3$, find the first n for which x_{n} and x_{n+1} agree to 5 digits after the decimal point. (Use radians, not degrees!)
(c) For the n you found in part (b), to how many digits after the decimal point does x_{n} actually agree with π ?
6. In Figure 5 is the graph of $f(x)=\ln (x)-1$ for $0<x<4$. It crosses the x-axis at $x=e$. You will use Newton's method for $f(x)=0$ to create numerical estimates for e.

Figure 5: Graph of $y=\ln (x)-1$.
(a) Using Newton's method for the equation $\ln (x)-1=0$ with $x_{1}=1$, tabulate x_{n} to find the first n for which x_{n} and x_{n+1} agree to 5 digits after the decimal point.
(b) For the n you found in part (a), to how many digits after the decimal point does x_{n} actually agree with e ?

Answers to Selected Problems:

1. The dimension are length $=x=\frac{3}{2}$, width $=2 x=3$, and height $=\frac{9}{2(3 / 2)^{2}}=2$.
2. (a) $D(x)=\sqrt{x^{2}+\left(x^{2}-3\right)^{2}}$
(b) $f(x)$ has absolute minima at $x= \pm \sqrt{5 / 2}$
3. (a) $A(\theta)=\sin \theta+(\sin \theta)(\cos \theta)$
(b) $\theta=\pi / 3$
(c) Since The maximum area is $\frac{3 \sqrt{3}}{4}$
4. Use $n=5: x \approx 1.3247 \ldots$
5. (a) $x_{n+1} x_{n}-\tan \left(x_{n}\right)$
(b) $n=3: x \approx 3.14159265$
(c) nine digits after the decimal point
6. (a) $n=5: x_{5} \approx 2.71828183$
(b) The number x_{5} agrees with e to 6 digits after the decimal point, not just 5 digits.
