Sections Covered: 5.2-5.5 and 6.1-6.2, plus some previous material

Read This First!

- These practice problems are NOT sufficient review for the exam and do not represent the exact length of the exam. You should also use other resources, such as the textbook, worksheets, and Paul's Online notes to find further practice problems on topics that you have struggled with (or that you have trouble with on the practice problem set).
- Use these practice problems, in addition to other course materials, as a guide to determine what you need to study more deeply.
- The exam will contain some multiple choice questions as well as short-answer questions. Short answer questions may be similar to questions found in lecture videos, live class activities, worksheets, and/or WebAsisgn. When studying, make sure you are able to fully justify your answers and reasoning to prepare for the short-answer portion of the exam.
- The exam is designed to take about 50 minutes, but you will have the full University-scheduled 2-hour Final Exam period to take the exam (and to take the Integrals Skills Quiz, if you need to).
- Please read each question carefully. For multiple choice questions, there is only one correct choice for each answer.
- On the exam, please carefully check all of your final answers. The submitted letter answers are the ONLY place that counts as your official answers for multiple-choice questions.
- You may NOT use a calculator or any other references on the exam, and you are expected to work independently.

1. If we use a right endpoint approximation with four subintervals (i.e., R_{4}), then what is the resulting approximation for

$$
\int_{0}^{4} f(x) d x ?
$$

(A) 0
(B) -2
(C) -4
(D) 2
(E) -3
2. Evaluate the definite integral $\int_{-1}^{1}\left(x^{2}+2 x+1\right) d x$.
(A) 3
(B) 2
(C) $2 / 3$
(D) 0
(E) $8 / 3$
3. Assume that $\int_{-2}^{3} f(x) d x=4$ and $\int_{-2}^{5} f(x) d x=3$. What is the value of $\int_{5}^{3}(f(x)+1) d x$?
(A) -1
(B) 2
(C) 1
(D) -2
(E) 3
4. Given the function $f(x)$ below, determine $f^{\prime}(2)$.

$$
f(x)=\int_{1}^{x^{2}} \frac{1}{t^{2}+1} d t
$$

(A) $\frac{4}{17}$
(B) $\frac{1}{17}$
(C) $\frac{2}{5}$
(D) $\frac{2}{17}$
(E) $\frac{4}{5}$
5. If $w^{\prime}(t)=\frac{\ln (t)}{t}$ is the rate of growth of a child in pounds per year, what is the value of $\int_{5}^{10} w^{\prime}(t) d t$ and what does it mean?
(A) $\ln (10)-\ln (5)$, the child weighs $\ln (10)-\ln (5)$ pounds more at age 10 than at age 5 .
(B) $\frac{75}{2}$, the child gains weight at a rate of $\frac{75}{2}$ pounds per year from agae 5 to age 10 .
(C) $\frac{[\ln (10)]^{2}-[\ln (5)]^{2}}{2}$, the child weighs $\frac{[\ln (10)]^{2}-[\ln (5)]^{2}}{2}$ lbs more at age 10 than at age 5.
(D) $\frac{[\ln (10)]^{2}-[\ln (5)]^{2}}{2}$, the child gains weight at a rate of $\frac{[\ln (10)]^{2}-[\ln (5)]^{2}}{2}$ pounds per year from agae 5 to age 10.
(E) $\frac{75}{2}$, the child weighs
$\frac{75}{2}$ pounds more at age 10 than at age 5.
6. Evaluate $\int_{0}^{\pi / 4} \frac{1+\cos ^{2}(x)}{\cos ^{2}(x)} d x$.
(A) $\frac{1}{2}$
(B) $\ln (1 / 2)$
(C) $\frac{\pi}{4}$
(D) $1+\frac{\pi}{4}$
(E) $\frac{1}{3}$
7. Evaluate $\int_{0}^{1}\left(x^{10}+10^{x}\right) d x$.
(A) $10+9 \ln (10)$
(B) $\frac{100}{11}$
(C) $\frac{1}{11}+\frac{9}{\ln (10)}$
(D) $\frac{12}{11}$
(E) 10
8. Evaluate $\int\left(\frac{1+r}{r}\right)^{2} d r$.
(A) $\frac{-\left(\frac{1+r}{r}\right)^{3}}{3 r^{2}}+C$
(B) $\frac{1}{r}-\frac{2}{r^{2}}+r+C$
(C) $\frac{\left(\frac{1+r}{r}\right)^{3}}{3}+C$
(D) $-\frac{1}{r}+r+C$
(E) $-\frac{1}{r}+2 \ln |r|+r+C$
9. Evaluate $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} d x$.
(A) $2 e^{\sqrt{x}}+C$
(B) $2 e^{\sqrt{x}} \sqrt{x}+C$
(C) $e^{\sqrt{x}}+C$
(D) $4 e^{\sqrt{x}} \sqrt{x}+C$
(E) $\frac{e^{\sqrt{x}}(\sqrt{x}-1)}{2 x}+C$
10. Evaluate $\int_{5}^{10} \frac{d t}{(t-4)^{2}}$.
(A) $-\frac{5}{6}$
(B) $\frac{1}{10}$
(C) $\frac{5}{3}$
(D) $\frac{5}{6}$
(E) $-\frac{1}{10}$
11. Determine the area of the region bounded by $y=\sqrt{x-1}$ and $x-y=1$.
(A) $-\frac{2}{3}$
(B) $\frac{1}{6}$
(C) $\frac{2}{3}$
(D) $-\frac{1}{6}$
(E) 1
12. Which expression could be used to calculate the area of the triangle with vertices $(0,0),(3,1)$, and $(1,2)$?
(A) $\int_{0}^{1}\left[2 x-\frac{x}{3}\right] d x+\int_{1}^{3}\left[-\frac{5}{6} x+\frac{5}{2}\right] d x$
(B) $\int_{0}^{3}\left[2 x-\frac{x}{3}\right] d x$
(C) $\int_{0}^{3}\left[-\frac{5}{6} x+\frac{5}{2}\right] d x$
(D) $\int_{0}^{1}(-x) d x+\int_{1}^{3}\left[-\frac{7}{2} x+\frac{5}{2}\right] d x$
(E) $\int_{0}^{3}\left[-\frac{7}{2} x+\frac{5}{2}\right] d x$
13. Write an integral that could be used to calculate the volume of the solid obtained by rotating the region under the curve $y=\frac{1}{x}$ from $x=1$ to $x=100$ around the x-axis.
(A) $\int_{1}^{100} \frac{\pi}{x} d x$
(B) $\int_{1}^{100} \frac{1}{x^{2}} d x$
(C) $\int_{1}^{100} \frac{\pi}{x^{2}} d x$
(D) $\int_{1}^{100} \frac{1}{x} d x$
(E) $\int_{1}^{100}\left[\frac{\pi}{x^{2}}-\frac{1}{x^{2}}\right] d x$
14. Find the volume of the solid whose base is this region bounded by the curves $y=1 / x, y=0$, $x=1$ and $x=100$ and whose cross-sections perpendicular to the x-axis are right triangles whose height (shorter leg) is half their base (longer leg).
(A) $\int_{1}^{100} \frac{1}{x^{2}} d x$
(B) $\int_{1}^{100} \frac{1}{x} d x$
(C) $\int_{1}^{100} \frac{1}{2 x^{2}} d x$
(D) $\int_{1}^{100} \frac{1}{4 x^{2}} d x$
(E) $\int_{1}^{100} \frac{1}{4 x} d x$
15. Write an integral that could be used to calculate the volume of the solid obtained by rotating the region bounded by $y=\sqrt{x}, y=1$ and $x=4$ around the x-axis.
(A) $\int_{1}^{4} \pi(\sqrt{x}-1)^{2} d x$
(B) $\int_{1}^{4}(\sqrt{x}-1) d x$
(C) $\int_{1}^{4}(x-1) d x$
(D) $\int_{1}^{4} \pi(\sqrt{x}-1) d x$
(E) $\int_{1}^{4} \pi(x-1) d x$
16. Write an integral that could be used to calculate the volume of the solid obtained by rotating the region bounded by $y=\sqrt{x}, y=1$ and $x=4$ around the line $y=1$.
(A) $\int_{1}^{4} \pi(\sqrt{x}-1)^{2} d x$
(B) $\int_{1}^{4}(\sqrt{x}-1) d x$
(C) $\int_{1}^{4}(x-1) d x$
(D) $\int_{1}^{4} \pi(\sqrt{x}-1) d x$
(E) $\int_{1}^{4} \pi(x-1) d x$
17. Write an integral that could be used to calculate the volume of the solid obtained by rotating the region bounded by $y=\sqrt{x}, y=1$ and $x=4$ around the line $x=5$.
(A) $\int_{1}^{2} \pi\left(4-y^{2}\right) d y$
(B) $\int_{1}^{2} \pi\left(4-y^{2}\right)^{2} d y$
(C) $\int_{1}^{4} \pi(5-\sqrt{x})^{2} d x$
(D) $\int_{1}^{4} \pi(5-x) d x$
(E) $\int_{1}^{2} \pi\left[\left(5-y^{2}\right)^{2}-1\right] d y$

