1. Evaluate the following limit:

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{x^{3}+2}}{x}
$$

(A) $+\infty$
(B) $-\infty$
(C) 0
(D) 1
(E) -1
this equals $\lim _{x \rightarrow \infty}$

$$
\frac{\sqrt{x^{3}+2}}{\sqrt{x^{2}}}=\lim _{x \rightarrow \infty} \sqrt{x+\frac{2}{x^{2}}}
$$

$$
"=" \sqrt{\infty+0} \rightarrow+\infty
$$

2. The function $f(x)=\frac{x^{2}+1}{x^{2}-4}$ has which of the following?
(A) no vertical or horizontal asymptotes
(B) 1 vertical asymptote and 1 horizontal asymptote
(C) 2 vertical asymptotes and 1 horizontal asymptote
(D) 1 vertical asymptote and 2 horizontal asymptotes
(E) 1 vertical asymptote and no horizontal asymptotes

$$
\begin{aligned}
& f(x)=\frac{x^{2}+1}{(x+2)(x-2)} \rightarrow 2 \text { vert, asym } \otimes x= \pm 2 \\
& \lim _{x \rightarrow \pm \infty} f(x)=\lim _{x \rightarrow \pm \infty} \frac{1+\frac{1}{x}}{1-\frac{y}{x^{2}}}=\frac{1+0}{1-0}=1 \\
& \Rightarrow \text { horse, asym } \\
& \text { a. } y=1
\end{aligned}
$$

3. If $f(x)=\sqrt{x}+\frac{1}{\sqrt{x}}$ for $x>0$, then $f^{\prime}(4)$ is which of the following?
(A) $\frac{5}{4}$
(B) $\frac{3}{4}$
(C) $\frac{3}{16}$
(D) $\frac{255}{32}$
(E) $\frac{257}{32}$

$$
\begin{aligned}
f(x)=x^{1 / 2}+x^{-1 / 2} \rightarrow f^{\prime}(x) & =\frac{1}{2} x^{-1 / 2}+\left(-\frac{1}{2}\right) x^{-3 / 2} \\
& =\frac{1}{2}\left(\frac{1}{\sqrt{x}}-\frac{1}{x \sqrt{x}}\right) \\
& =\frac{1}{2} \cdot \frac{x-1}{x \sqrt{x}}
\end{aligned}
$$

$$
f^{\prime}(4)=\frac{1}{2} \cdot \frac{4-1}{4 \sqrt{4}}=\frac{3}{16}
$$

4. Determine $f^{\prime}(1)$ for the function $f(x)=\left(x^{3}-x^{2}+1\right)\left(x^{4}-x+2\right)$.
(A) 3
(B) 0
(C) 4
(D) 2
(E) 5

$$
\begin{aligned}
f^{\prime}(x) & =\left(3 x^{2}-2 x\right)\left(x^{4}-x+2\right)+\left(x^{3}-x^{2}+1\right)\left(4 x^{3}-1\right) \\
\rightarrow f^{\prime}(1) & =(3-2)(1-1+2)+(1-1+1)(4-1) \\
& =(1)(2)+(1)(3)=5
\end{aligned}
$$

5. Find the equation of the tangent line to the curve $y=\frac{x}{x+1}$ at $x=1$.
(A) $y=\frac{1}{2}$
(B) $y=-\frac{1}{2} x+1$
(C) $y=\frac{1}{2} x$
(D) $y=-\frac{1}{4} x+\frac{3}{4}$
(E) $y=\frac{1}{4} x+\frac{1}{4}$

$$
\frac{d y}{d x}=\frac{1(x+1)-x(1)}{(x+1)^{2}}=\frac{1}{(x+1)^{2}} \rightarrow \text { at } x=1, \quad m=y^{\prime}=\frac{1}{2^{2}}=
$$

point: $y(1)=\frac{1}{1+1}=\frac{1}{2} \rightarrow\left(1, \frac{1}{2}\right)=\left(x_{0}, y_{0}\right)$

$$
y-y_{0}=m\left(x-x_{0}\right) \rightarrow y-\frac{1}{2}=\frac{1}{4}(x-1)
$$

6. If $f(x)=\sin (x)$, determine $f^{(125)}(\pi)$.

$$
\begin{aligned}
& \text { (A) } 1 \\
& \text { (B) }-1 \\
& \text { (C) } 0 \\
& \text { (D) } 1 / 2 \\
& \text { (E) } \sqrt{2} / 2 \\
& f^{(4)}(x)=f^{(8)}(x)=\cdots=f^{(124)}(x)=\sin x \text {, so } \\
& f^{(125)}(x)=\frac{d}{d x}\left[f^{(124)}(x)\right]=\frac{d}{d x}(\sin x)=\cos x . \\
& f^{(125)}(\pi)=\cos \pi=-1
\end{aligned}
$$

7. To compute the derivative of $\sin ^{2} x$ with the chain rule by writing this function as a composition $f(g(x))$, what is the "inner" function $g(x)$?
(A) x
(B) x^{2}
(C) $\sin x$
(D) $\sin ^{2} x$
(E) None of the above

$$
\begin{array}{r}
\sin ^{2} x=(\sin x)^{2}, \text { so } g(x)=\sin x, \\
f(x)=x^{2}
\end{array}
$$

8. Let $y=f(x) g(x)$. Using the table of values below, determine the value of $\frac{d y}{d x}$ when $x=2$.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	5	2	4	4
2	3	4	1	3
3	2	3	2	2
4	4	1	5	5
5	1	5	3	1

(A) 9
(B) 12
(C) 13
(D) 15
(E) 23

9. If $g(x)=\frac{a x+b}{c x+d}$, then $g^{\prime}(1)$ is which of the following? Note: The numbers a, b, c, and d are constants.
(A) $\frac{a+b-c-d}{c+d}$
(B) $\frac{a d-b c}{(c+d)^{2}}$
(C) $\frac{a+b-c-d}{(c+d)^{2}}$
(D) $\frac{a d+b c}{c+d}$
(E) $\frac{a d+b c}{(c+d)^{2}}$
$g^{\prime}(x)=\frac{a(c x+d)-(a x+b) c}{(c x+d)^{2}}$
$=\frac{a c x+a d-(a c x+b c)}{(c x+d)^{2}}$
$=\frac{a d-b c}{(c x+d)^{2}} \rightarrow g^{\prime}(1)=\frac{a d-b c}{(c+d)^{2}}$
10. For the function $f(x)=x^{3} \arctan (x)$, which of the following is $f^{\prime}(1)$?
(A) $\frac{3 \pi}{4}$
(B) $\frac{3 \pi}{4}+\frac{1}{2}$
(C) $\frac{1}{2}$
(D) $\frac{\pi}{4}$
(E) $3 \tan (1)+\sec ^{2}(1)$

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2} \arctan (x)+x^{3} \cdot \frac{1}{1+x^{2}} \\
& \rightarrow f^{\prime}(1)=3(1)^{2} \arctan (1)+1^{3} \cdot \frac{1}{1+1^{2}}=3\left(\frac{\pi}{4}\right)+\frac{1}{2}
\end{aligned}
$$

（以）$f^{\prime}(\pi)=g^{\prime}(\pi)=0 \quad$（E）$f^{\prime}(0)=g^{\prime}(0)$

$$
\begin{aligned}
& f^{\prime}(x)=2 x \cos \left(x^{2}\right) \pm \cos \left(x^{2}\right) \rightarrow \notin \\
& f^{\prime}(\pi)=2 \pi \cos \pi^{2} \neq 0 \rightarrow \notin \mathbb{B} \\
& g_{0}^{\prime}(x)=2 \sin x \cos x \neq-2 \sin x \cos x \rightarrow \mathbb{B}
\end{aligned}
$$

$$
\text { noqual } \rightarrow \nless
$$

$$
\begin{aligned}
& f^{\prime}(0)=2(0) \cos \left(0^{2}\right)=0 \\
& g^{\prime}(0)=2 \sin (0) \cos (0)=2(0)(1)=0
\end{aligned}
$$

12．If $\frac{d}{d x}[f(4 x)]=x^{2}$ ，then find $f^{\prime}(x)$ ．

$$
\begin{array}{lll}
\text { LA }_{\text {(A) } \frac{x^{2}}{64}} & \text { (B) } \frac{x^{2}}{16} & \text { (C) } \frac{x^{2}}{4} \\
\text { (D) } x^{2} & \text { (E) } 4 x^{2}
\end{array}
$$

$$
\frac{d}{d x}[f(4 x)]=f^{\prime}(4 x) \cdot 4=x^{2} \rightarrow f^{\prime}(4 x)=\frac{x^{2}}{4}
$$

Let $u=4 x$ ．Then $\frac{u}{4}=x$ ，so

$$
f^{\prime}(u)=\frac{\left(\frac{u}{4}\right)^{2}}{4}=\frac{\frac{u^{2}}{16}}{4}=\frac{u^{2}}{64}
$$

replacing u with x to represent the function，

$$
f^{\prime}(x)=\frac{x^{2}}{k^{2}}
$$

13. Find an equation of the tangent line to the curve $\left(x^{2}+y^{2}\right)^{2}=4 x^{2} y$ at the point $(1,1)$
A) $y=1$
(B) $y=x$
(C) $y=2 x-1$
(D) $y=-x+2$
(E) $y=-2 x+3$

$$
\begin{aligned}
& \frac{d}{d x}\left[\left(x^{2}+y^{2}\right)^{2}\right]=\frac{d}{d x}\left[4 x^{2} y\right] \\
& 2\left(x^{2}+y^{2}\right)\left(2 x+2 y \frac{d y}{d x}\right)=8 x y+4 x^{2} \frac{d y}{d x} \\
& \text { at } x=1, y=1 \text { : } \\
& 2(1+1)\left(2+2 \frac{d y}{d x}\right)=8+4 \frac{d y}{d x} \\
& 4\left(2+2 \frac{d y}{d x}\right)=8+4 \frac{d y}{d x} \\
& \text { 14. Find } \left.\frac{d}{d x}+8 \sin \left(\ln x^{2}\right)\right] \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (A) } \frac{-\cos (\ln (x))}{x^{2}} \\
& \text { (B) } \frac{-2 \sin \left(\ln \left(x^{2}\right)\right)}{x^{2}} \\
& \text { (C) } \frac{\cos (\ln (x))}{2 x^{2}} \\
& \text { (D) } \frac{2 \cos \left(\ln \left(x^{2}\right)\right)}{x} \\
& \text { (E) None of the above } \\
& \frac{d}{d x}\left[\sin \left(\ln x^{2}\right)\right]=\cos \left(\ln x^{2}\right) \cdot \frac{d}{d x}\left[\ln \left(x^{2}\right)\right] \\
& =\cos \left(\ln x^{2}\right) \cdot \frac{1}{x^{2}} \cdot \frac{d}{d x}\left(x^{2}\right) \\
& =\cos \left(\ln x^{2}\right) \cdot \frac{1}{x^{2}} \cdot 2 x \\
& =\frac{2 x \cos \left(\ln x^{2}\right)}{x^{2}}=\frac{2 \cos \left(\ln \left(x^{2}\right)\right)}{x}
\end{aligned}
$$

15. Find $\frac{d}{d x}\left[\log _{4}(3 x)\right]$.
(A) $\frac{1}{3 x \ln 4}$
(B) $\frac{1}{x \ln 4}$
(C) $\frac{1}{x}$
(D) $\frac{3}{x \ln 4}$
(E) $\frac{3}{x}$

$$
\frac{d}{d x}\left[\log _{4}(3 x)\right]=\frac{1}{3 x \ln 4} \frac{d}{d x}(3 x)=\frac{3}{3 x \ln 4}=\frac{1}{x \ln 4}
$$

16. The size of a colony of bacteria at time t hours is given by $P(t)=100 e^{k t}$, where P is measured in millions. If $P(5)>P(0)$, then determine which of the following is true.

(A) I and III only.
(B) I and II only.
(C) I only.
(D) II only.
(E) I, II, and III.

$$
\begin{aligned}
& \text { I. } P \text { increasing, so } k>0 \text { in } P=P(0) e^{k t} v \\
& \text { II. } P^{\prime}(t)=k P(t)>0 \text { since } k>0 \text { and } P>0 \\
& \rightarrow P^{\prime}(5)>0 \times \\
& \text { III. } P^{\prime}(t)=100 k e^{k t} \rightarrow P^{\prime}(10)=100 k e^{10 k}
\end{aligned}
$$

17. Suppose that the half-life of a certain substance is 20 days and there are initially 10 grams of the substance. The amount of the substance remaining after time t is given by

$$
\begin{aligned}
& \text { (A) } 10 e^{10 k} \\
& \text { (B) } \ln (10) e^{k t / 10} \\
& \text { (C) } \ln (10) e^{t / 10} \\
& y=A e^{k t}, A=y(0)=10: y=10 e^{k t} \\
& \text { At } t=20, y=5: 5=10 e^{k(20)} \\
& \begin{aligned}
\rightarrow \frac{1}{2}=e^{20 k} \rightarrow 20 k & =\ln \frac{1}{2} \\
k & =\frac{\ln \frac{1}{2}}{20} \\
& =-\frac{\ln 2}{20}
\end{aligned}
\end{aligned}
$$

18. Atmospheric pressure (the pressure of air around you) decreases as your height above sea level increases. It decreases exponentially by 12% for every 1000 meters. The pressure at sea level is 1013 hecto pascals. The amount of pressure at any height h is given by,

$$
\begin{aligned}
& \text { (A) } 1000 e^{10 h} \\
& \text { (B) } \ln (1013) e^{k h / 12} \\
& \text { (C) } 1013 e^{\ln (0.88) / 1000} \\
& \text { (D) } 1000 e^{-h \ln (2) / 20} \\
& \text { (E) } 1013 e^{h \ln (0.88) / 1000} \\
& \begin{aligned}
y=A e^{k h}, A=y(0) & =\text { pressure at } h=0(\text { (sea level) } \\
& =1013 \rightarrow y=1013 e^{k h}
\end{aligned} \\
& \text { At } h=1000, y=0.88 \cdot 1013=88 \% \text { of sea } \text { temples }^{\text {pissul }} \\
& \rightarrow 0.88(1013)=1015 e^{k(1000)} \\
& 0.88=e^{1000 k} 1000 k=\ln (.88) \\
& \rightarrow K=\frac{\ln (.88)}{1000} \\
& \text { So } y=\underline{1013 e^{\ln (0.88) / 1006}}
\end{aligned}
$$

19. A particle moves along the curve $y=\sqrt[3]{x^{4}+11}$. As it reaches the point $(2,3)$, the y-coordinate is increasing at a rate of $32 \mathrm{~cm} / \mathrm{s}$. Which of the following represents the rate of increase of the x-coordinate at that_instant?
(A) $27 \mathrm{~cm} / \mathrm{s}$
(B) $9 \mathrm{~cm} / \mathrm{s}$
(C) $27 / 2 \mathrm{~cm} / \mathrm{s}$
(D) $67 / 4 \mathrm{~cm} / \mathrm{s}$
(E) None of the above

$$
\begin{aligned}
& y=\sqrt[3]{x^{4}+11} \rightarrow y^{3}=x^{4}+11 \\
& \frac{d}{d t}\left(y^{3}\right)=\frac{d}{d t}\left(x^{4}+11\right) \rightarrow 3 y^{2} \frac{d y}{d t}=4 x^{3} \frac{d x}{d t}
\end{aligned}
$$

$$
\text { when } x=2, y=3 \text {, and } \frac{d y}{d t}=32 \text { : }
$$

$$
3(3)^{2}(32)=4(2)^{3} \frac{d x}{d t} \rightarrow 27 \cdot 3 h=32 \frac{d x}{d t}
$$

20. Water is withdrawn at a constant rate of $2 \mathrm{ft}^{3} / \mathrm{min}$ from an inverted cone-shapectank the vertex is at the bottom). The diameter of the top of the tank is 4 ft , and the height of the tank is 8 ft . How fast is the water level falling when the depth of the water in the tank is 2 ft ? (Remember that the volume of a cone of height h and radius r is $V=\frac{\pi}{3} r^{2} h ?$)

$$
\begin{aligned}
& 1+48+\ldots \\
& \text { (D) } \frac{8}{\pi} \mathrm{ft} / \mathrm{min} \\
& \begin{array}{l}
\text { (B) } \frac{4}{\pi} \mathrm{ft} / \mathrm{min} \\
\text { (E) } \frac{16}{\pi} \mathrm{ft} / \mathrm{min}
\end{array} \\
& \text { (C) } \frac{6}{\pi} \mathrm{ft} / \mathrm{min} \\
& \text { (A) } \frac{2}{\pi} \mathrm{ft} / \mathrm{min}
\end{aligned}
$$

21. Determine $f^{\prime \prime}(x)$ for the function $f(x)=\frac{\ln x}{x^{2}}$.
(A) $\frac{-1}{2 x^{2}}$
(B) $\frac{6 \ln x}{x^{4}}$
(C) $\frac{1-6 \ln x}{x^{4}}$
(D) $\frac{1-2 \ln x}{x^{3}}$
E) None of the above

22. Use the linearization for the function $f(x)=\sqrt{x^{3}+2 x+1}$ at $x=1$ to approximate the value of $f(1.1)$.
(A) $\frac{161}{80}$
(B) $\frac{21}{10}$
C) $\frac{17}{8}$
(D) $\frac{1}{2}$
(E) $\frac{17}{16}$

$$
\begin{aligned}
& L(x)=f^{\prime}(1)(x-1)+f(1) \\
& f(1)=\sqrt{1+2 \alpha 1}=\sqrt{4}=2 \\
& f^{\prime}(x)=\frac{1}{2}\left(x^{3}+2 x+1\right)^{-1 / 2}\left(3 x^{2}+2\right) \\
& f^{\prime}(1)=\frac{1}{2}(1+2+1)^{-1 / 2}(3+2)=\frac{1}{2}\left(\frac{1}{2}\right)(5)=\frac{5}{4} \\
& \rightarrow f(1.1) \approx L(1.1)=f^{\prime}(1)(1.1-1)+f(1)=\frac{5}{4}(0.1)+2 \\
& \\
& =\frac{5}{40}+2=\frac{1}{8}+2 \\
&
\end{aligned}
$$

23. The curve below is the graph of $y=f(x)$. List all x-values, in interval form, on which $f^{\prime}(x)$ (the derivative of f) is positive.

(A) $(0,1)$
(B) $(0,2)$
(C) $(1,2)$
(D) $(2,3)$
(E) $(0,1)$ and $(2,3)$

$$
f^{\prime}(x) \text { is positive when } f \text { is increasme }
$$

between about $x=0$ and $x=1$, and
between about $x=2$ and $x=3$.

