Section 5.2: The Second Derivative
Section Objectives:

e Know how to find the second derivative.

e Know what it means for a functions to be concave up or concave down (both in terms
of the first derivative and the graph).

e Know how to use the second derivative to tell if a function is concave up or concave
down.

e Know the definition of an inflection point of a function.

e Know how to use the second derivative to determine if a function has a minimum or
maximum at a place where the derivative is 0.

e Know how to tell when an economy of scale exists.

Practice Problems

1. Sketch the graph of a function on the domain [—5, 5] which satisfies all the conditions
below.

increasing on (—5, —3) and (3, 5)

decreasing on (—3, 3)

concave down on (—5,0)
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2. If f/(4) = 0 and f”(4) = 5, what can we say about f at x = 4?7 Explain your reasoning.
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3. Let f(z) = 32* — 42® + 1. Find the intervals where f(z) is increasing, decreasing,
concave up and concave down. Find all relative extrema and inflection points. Use
these to sketch a graph of the function.
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4. Let f(x) = e~**. Find the intervals where f(z) is increasing, decreasing, concave up
and concave down. Find all relative extrema and inflection points. Use these to sketch

a graph of the function. ( _X? X
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5. We have an economy of scale if the marginal cost (C’(x)) is decreasing as the number
of units produced increases. What does this tell us about C”(z)? About C(z)?
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6. If the cost function of a firm is given by C'(z) = —0.12%+2x+5, is this firm experiencing
an economy of scale? Explain your reasoning.
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More Practice from Textbook 5.2: You should do as many problems from each set (1-
6, 7-12, 13-20, 21-24, 25-36, 37-41, 45-62), as needed until you are comfortable with these
techniques. 45-62 are good practice for application problems.



