1. The distance traveled by a particle in t seconds is given by $s(t) = t^2 + 3t$. What is the particle's average velocity over the interval $1 \le t \le 4$?

y over the interval
$$1 \le t \le 4$$
:
(A) 8 (B) 0 (C) 2

(D) 5 (E)
$$-1$$

$$\frac{S(4)-S(1)}{4-1} = \frac{(4^2+3\cdot4)-(1^2+3\cdot1)}{3}$$

$$= \frac{16+12-1-3}{3}$$

$$= \frac{24}{3} = 8$$

2. Evaluate the following limit:

$$\lim_{x \to 1^-} \frac{x-3}{x-1}.$$

(A) 2 (B)
$$-2$$
 (C) -1

$$(D)$$
 $+\infty$ (E) $-\infty$

$$x = 0.999$$
: $\frac{x-3}{x-1} = \frac{-2.001}{-0.001} = 2001$
large,
positive

$$\rightarrow \underbrace{\times}$$

[1]

3. Using the table below, what appears to be the value of the limit

[1]

$$\lim_{x \to 2^+} f(x)$$

x	1.9	1.99	1.999	1.9999	2	2.0001	2.001	2.01	2.1
f(x)	3	7	291	4081	?	-9532	-112	-17	-1

100ks like x+2+

- (D) -1000
- (E) None of the above.

4. If $\lim_{x\to 3^+} f(x) = 5$ what can be said about $\lim_{x\to 3^-} f(x)$?

[1]

- (A) It must be 5
- (B) It must be f(3)
- (C) It must be f(5)

- (D) It must be -5
- (E) It cannot be determined

two one-sided limits match if I.m f(x)

exists, but we don't know if it does

5. If $-x^2 - x + 1 \le g(x) \le x^2 - x + 1$ for all $x \ne 0$, what is $\lim_{x \to 0} g(x)$?

- (B) 1 (C) 2
- (D) g(0) (E) Cannot be determined

$$\lim_{x \to 0} (-x^2 - x + 1) \le \lim_{x \to 0} g(x) \le \lim_{x \to 0} (x^2 - x + 1)$$
 $\lim_{x \to 0} (-x^2 - x + 1) \le \lim_{x \to 0} g(x) \le \lim_{x \to 0} (x^2 - x + 1)$

6. Evaluate the following limit:

$$\lim_{x \to 4} \frac{x^2 - 8x + 16}{x - 4}.$$

- (B) 8 (C) -8

$$\lim_{x \to 4} \frac{x^2 - 8x + 16}{x - 4} = \lim_{x \to 4} \frac{(x - 4)^2}{x - 4} = \lim_{x \to 4} (x - 4) = 4 - 4 = 0$$

7. If $\lim_{x\to 1} f(x) = 3$, $\lim_{x\to 1} g(x) = -2$, and $\lim_{x\to 1} h(x) = 4$, evaluate the limit

[1]

$$\lim_{x \to 1} \left(\frac{2f(x)}{g(x)} + \sqrt{h(x)} \right).$$

(A)
$$-1$$
 (B) 3 (C) 13

$$\lim_{x \to 1} \left(\frac{2f(x)}{g(x)} + \sqrt{h(x)} \right) dd$$

$$\lim_{x \to 1} \left(\frac{2f(x)}{g(x)} + \sqrt{h(x)} \right) = \frac{2 \cdot 3}{-2} + \sqrt{4}$$

$$= \frac{2 \cdot 3}{1 \cdot m} f(x) + \sqrt{\lim_{x \to 1} h(x)} = \frac{2 \cdot 3}{-2} + \sqrt{4}$$

$$= -3 + 2 = -1$$

$$(\text{not } 0)$$

8. If the function f(x) is continuous on the interval [-1,3], f(-1)=1, and f(3)=11, which numbers below are guaranteed to be values of f(x) by the Intermediate Value Theorem on the interval (-1,3)?

[1]

I. 3

II. $\sqrt{2}$

III. 3π

- (A) I only (B) II only
- (C) III only
- (D) I and II only
- (E) I, II, and III

all values between f(-1)=1 and f(3)=11are guaranteed. $1<\sqrt{2}<3<\sqrt{2}$ so all 3 are guaranteed

9. Determine the value of the number k that makes the function f(x) below continuous:

[1]

$$f(x) = \begin{cases} 1 - kx & \text{if } x < 1, \\ k + x & \text{if } x \ge 1. \end{cases}$$

(B) 1 (C) -3/4

 $(D)^{-1/2}$

(E) 15/17

Want
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = \lim_$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (1-kx) = 1-k$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} (k+x) = k+1$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (k+x) = k+1$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (k+x) = k+1$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (k+x) = k+1$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (k+x) = k+1$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (k+x) = k+1$$

10. Consider the function

$$h(x) = \begin{cases} \frac{1}{x} & \text{if } 0 < x < 1, \\ x & \text{if } x > 1. \end{cases}$$

Which of the following are true?

I.
$$\lim_{x \to 1^+} h(x)$$
 exists

II. $\lim_{x \to 1^-} h(x)$ exists

III.
$$\lim_{x \to 1} h(x)$$
 exists

$$h(x)$$
 is continuous at $x = 1$

- (B) I and II only (C) I, II, and III only
- (D) IV only
- (E) I, II, III, and IV

I.
$$\lim_{x \to 1^+} h(x) = \lim_{x \to 1^+} \frac{1}{x} = \frac{1}{1} = 1$$

II. $\lim_{x \to 1^-} h(x) = \lim_{x \to 1^-} \chi = 1$

III. $\lim_{x \to 1^-} h(x) = \lim_{x \to 1^+} h(x) = 1$, so $\lim_{x \to 1^+} h(x) = 1$

h(1) not defined, so h not

[1]

[1]

11. Evaluate the following limit:

$$\lim_{x \to \infty} \frac{\sqrt{x^2 + 2}}{x}.$$

- (B) $-\infty$

$$\lim_{x \to \infty} \sqrt{x^2 + 2} = \lim_{x \to \infty} \sqrt{x^2 + 2} \cdot \frac{1}{x} = \lim_{x \to \infty} \sqrt{x^2 + 2} \cdot \frac{1}{x^2}$$

$$= \lim_{x \to \infty} \sqrt{x^2 + 2} \cdot \frac{1}{x^2}$$

$$= \lim_{x \to \infty} \sqrt{x^2 + 2} \cdot \frac{1}{x^2}$$

$$= \lim_{x \to \infty} \sqrt{x^2 + 2} \cdot \frac{1}{x^2}$$

$$= \lim_{x \to \infty} \sqrt{x^2 + 2} \cdot \frac{1}{x^2}$$

$$= \lim_{x \to \infty} \sqrt{x^2 + 2} \cdot \frac{1}{x^2}$$

$$= \lim_{x \to \infty} \sqrt{x^2 + 2} \cdot \frac{1}{x^2}$$

$$= \lim_{x \to \infty} \sqrt{x^2 + 2} \cdot \frac{1}{x^2}$$

$$= \lim_{x \to \infty} \sqrt{x^2 + 2} \cdot \frac{1}{x^2}$$

$$= \lim_{x \to \infty} \sqrt{x^2 + 2} \cdot \frac{1}{x^2}$$

$$= \lim_{x \to \infty} \sqrt{x^2 + 2} \cdot \frac{1}{x^2}$$

$$= \lim_{x \to \infty} \sqrt{x^2 + 2} \cdot \frac{1}{x^2}$$

$$= \lim_{x \to \infty} \sqrt{x^2 + 2} \cdot \frac{1}{x^2}$$

$$= \lim_{x \to \infty} \sqrt{x^2 + 2} \cdot \frac{1}{x^2}$$

$$= \lim_{x \to \infty} \sqrt{x^2 + 2} \cdot \frac{1}{x^2}$$

$$= \lim_{x \to \infty} \sqrt{x^2 + 2} \cdot \frac{1}{x^2}$$

$$= \lim_{x \to \infty} \sqrt{x^2 + 2} \cdot \frac{1}{x^2}$$

$$= \lim_{x \to \infty} \sqrt{x^2 + 2} \cdot \frac{1}{x^2}$$

12. The function $f(x) = \frac{x^2 + 1}{x^3 + 8}$ has which of the following?

[1]

- (A) no vertical or horizontal asymptotes
- (B) 1 vertical asymptote and 1 horizontal asymptote
- (C) 2 vertical asymptotes and 1 horizontal asymptote
- (D) 1 vertical asymptote and 2 horizontal asymptotes
- (E) 1 vertical asymptote and no horizontal asymptotes

• Vertical:
$$x^3+8=0 \rightarrow x^2=-8 \rightarrow x=-2$$
 (and $x^2+1=5 \neq 0$ at $x=-2$, so Vertical: asymptote there)

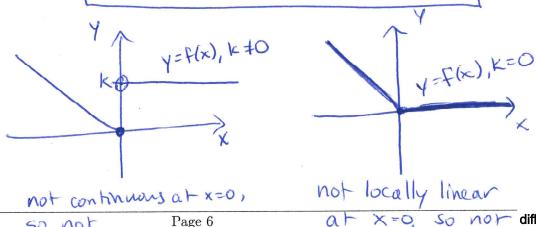
Horizontal:
$$\lim_{x \to \pm \omega} f(x) = \lim_{x \to \pm \omega} \frac{x^2 + 1}{x^3 + 8} \cdot \frac{x^3}{x^3}$$

$$= \lim_{x \to \pm \omega} \frac{1}{x^2 + 1} \cdot \frac{x^3}{x^3} = 0 + 0$$

$$= \lim_{x \to \pm \omega} \frac{1}{1 + 2} \cdot \frac{1}{1 + 0} = 0 + \lim_{x \to \pm \omega} \frac{1}{1 + 0} = 0$$
13. For what value of the number k is the following function differentiable at $x = 0$?

$$f(x) = \begin{cases} -x & x \le 0\\ k & x > 0 \end{cases}$$

- (A) -2(C) 0(B) -1
- (E) No value of k makes this function differentiable at x=0(D) 1



all Downta Ho

[1]

14. If
$$f(x) = 3x^{10}$$
, then $\lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$ is which of the following?

(A) $f'(x)$ (B) $f'(1)$ (C) Does not exist

(D) 0 (E) None of the above

$$\lim_{h \to 0} \frac{f(1+h)-f(1)}{h} = \frac{f'(1)}{2}$$
 by limit defin of denvative $\lim_{h \to 0} \frac{f'(x)-3.10}{h} = \frac{30}{2}$ by limit defin of denvative $\lim_{h \to 0} \frac{f'(x)-f(1)}{h} = \frac{f'(1)-30.19}{h} = \frac{30}{2}$

15. If we want to calculate the derivative f'(x) of f(x) = 3x + 4 using the limit definition of the derivative which of the following limits do we need to evaluate and to what does the limit evaluate?

(A)
$$\lim_{h \to 0} \frac{3(x+h) + 4 - (3x+4)}{h} = 3$$

(B) $\lim_{h \to 0} \frac{3(x+h) + 4 - (3x+4)}{h} = 0$

(C)
$$\lim_{h \to 0} \frac{3h + 4 - (3x + 4)}{h} = 3x + 3$$

(D)
$$\lim_{h\to 0} \frac{3(x+h)+4-(3h+4)}{h} = 3$$

(E) None of the above.

$$f'(x) = \lim_{h \to 0} f(x+h) - f(x)$$

$$= \lim_{h \to 0} \frac{3(x+h) + 4 - (3x+4)}{h}$$

$$= \lim_{h \to 0} \frac{3x + 3h + 4 - 3x - 4}{h}$$

$$= \lim_{h \to 0} \frac{3h}{h} = \lim_{h \to 0} 3 = 3$$

[1]

16. Below is the graph of the derivative g'(x) of a function g(x).

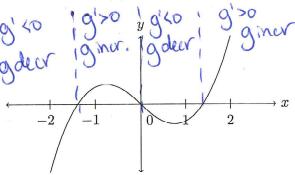
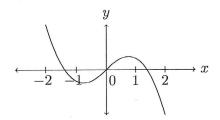


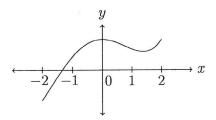
Figure 1: Graph of g'(x).

Which of the following is a possible graph of g(x)?

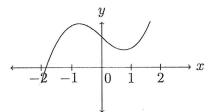
(A)



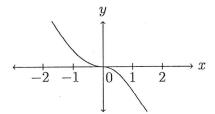
(B)



(C)



(D)



(E) None of the above. It looks like:

