Name: \qquad
Discussion Section: \qquad
Solutions should show all of your work, not just a single final answer.
3.3: Derivatives of Trigonometric Functions

1. Compute the derivative of each function below using differentiation rules.
(a) $f(x)=x^{3} \cos x$
(b) $f(x)=\frac{1+\sin x}{1+\cos x}$
(c) $f(x)=e^{x} \tan x$
(d) $f(x)=\frac{\sec x}{\sqrt{x}}$ (Compute (d) in two ways, using (i) the quotient rule and (ii) the product rule.)
2. Find the equation of the tangent line to the curve $y=\sin x \cos x$ at $x=\frac{\pi}{4}$. (Your coefficients must be exact, not approximations.)
3. Find the higher derivative $\frac{d^{1881}}{d x^{1881}}(2 \cos x)$ by finding the first eight derivatives and observing the pattern that occurs.
4. Determine the following limits by making a change of variables to allow you to use the relation $\lim _{t \rightarrow 0} \frac{\sin t}{t}=1$.
(a) $\lim _{x \rightarrow 0} \frac{\sin 4 x}{x}$
(b) $\lim _{x \rightarrow 0} \frac{\sin 7 x}{5 x}$

3.4: The Chain Rule

5. Compute the derivative with respect to x of each function below using differentiation rules.
(a) $f(x)=\left(x^{3}-x+1\right)^{10}$
(b) $f(x)=\sqrt{x^{3}+4 x}$
(c) $f(x)=e^{a x} \cos (b x)$ for constants a and b
(d) $f(x)=\left(\frac{e^{x}}{3-x}\right)^{8}$
(e) $f(x)=\sin ^{2}(x)-\sin \left(x^{2}\right)$
6. Differentiate the functions below with respect to t, where $r=r(t)$ is a function of t.
(a) $\left(r^{2}+1\right)^{4}$
(b) $\sin (2 r)-2 \sin r$
(c) $e^{r^{2}+a r+b}$ for constants a and b.
7. If $f^{\prime}(0)=5$ and $F(x)=f(3 x)$, what is $F^{\prime}(0)$?
8. T/F (with justification) If $f(x)$ is differentiable, then $\frac{d}{d x}(f(\sqrt{x}))=\frac{f^{\prime}(x)}{2 \sqrt{x}}$.

3.5: Implicit Differentiation

9. Find $\frac{d y}{d x}$ using implicit differentiation. Your final answer may involve both x and y.
(a) $x^{2} y-a x y^{2}=x+y$ where a is a constant.
(b) $\sin (x+y)=x+\cos (3 y)$
(c) $e^{x y}=x^{2}+y^{2}$
(d) $x=\arctan \left(y^{2}\right)$
10. Use implicit differentiation to find an equation of the tangent line to the curve

$$
x^{2}+y^{2}=\left(2 x^{2}+2 y^{2}-x\right)^{2}
$$

at the point $(0,1 / 2)$. Note. The graph of this equation is known as a cardioid, shown below. It's not the graph of a function, and this is where implicit differentiation can be helpful to us.

11. On the ellipse $x^{2}+9 y^{2}=9$, find $\frac{d^{2} y}{d x^{2}}$ using implicit differentiation. Your final answer may involve both x and y.

