Name: \qquad
Discussion Section: \qquad
Solutions should show all of your work, not just a single final answer.

2.1: The Tangent and Velocity Problems

1. The point $P=(1 / 4,1 / \sqrt{2})$ lies on the curve $y=\cos (\pi x)$ where x is in radians, as shown below.

(a) If $Q=(x, \cos (\pi x))$ then use your calculator to find the slope of the secant line $P Q$, rounded to four digits after the decimal point, for the following values of x :
(i) 0.24 ,
(iv) 0.26,
(ii) 0.249 ,
(v) 0.251 ,
(iii) 0.2499 ,
(vi) 0.2501 .
(b) Using the results of part(a), estimate the value of the slope of the tangent line to the curve at $(1 / 4,1 / \sqrt{2})$ to three digits after the decimal point.
(c) Using the estimated slope from part(b), what is an estimate for the equation of the tangent line to the graph of $y=\cos (\pi x)$ at $(1 / 4,1 / \sqrt{2})$? Write the final answer in the form $y=m x+b$ where m and b are each rounded to three digits after the decimal point.
2. The displacement of an object on a line, in meters, is $s=1+2 t+\frac{1}{4} t^{2}$, where t is in seconds.
(a) Find the average velocity in $\mathrm{m} / \mathrm{sec}$ over each of the following time periods. For parts (i) through (v), round your answer to three digits after the decimal point. In part (vi), h is a nonzero variable and the final answer is in terms of h.
(i) $[1,1.5]$
(ii) $[1,1.1]$
(iii) $[1,1.01]$
(iv) $[.9,1]$
(v) $[.99,1]$
(vi) $[1,1+h]($ for $h>0)$ or $[1+h, 1]($ for $h<0)$
(b) Use the work in part a to estimate the instantaneous velocity of the object at time $t=1$, in $\mathrm{m} / \mathrm{sec}$.

2.2: The Limit of a Function

3. The graph of $y=f(x)$ is below. Use it to compute each limit or explain why it doesn't exist.

(a) $\lim _{x \rightarrow 0^{-}} f(x)$
(g) $\lim _{x \rightarrow 0} f(x)$
(b) $\lim _{x \rightarrow 1^{-}} f(x)$
(h) $\lim _{x \rightarrow 1} f(x)$
(c) $\lim _{x \rightarrow 2^{-}} f(x)$
(i) $\lim _{x \rightarrow 2} f(x)$
(d) $\lim _{x \rightarrow 0^{+}} f(x)$
(j) $f(0)$
(e) $\lim _{x \rightarrow 1^{+}} f(x)$
(k) $f(1)$
(f) $\lim _{x \rightarrow 2+} f(x)$
(l) $f(2)$
4. Determine whether the following limits are finite, ∞, or $-\infty$. If the limit does not exist for any other reason, write DNE with a justification.
(a) $\lim _{x \rightarrow 1} \frac{\sqrt{x}}{2(x-1)^{2}}$
(b) $\lim _{x \rightarrow 1+} \frac{x-2}{x-1}$
(c) $\lim _{x \rightarrow 0} \frac{1}{x}-\frac{1}{x^{2}}$
5. T/F (with justification) The line $x=1$ is a vertical asymptote of the graph of $y=$ $\frac{x^{2}-1}{x^{2}-2 x+1}$.
6. T/F (with justification) The line $x=1$ is a vertical asymptote of the graph of $y=$ $\frac{x^{2}-2 x+1}{x^{2}-1}$.
