
Math 1131 Applications: Small-Angle Approximation

That sin′(0) = cos(0) = 1 means the tangent line to the graph of y = sinx at (0, 0)

has slope 1: the tangent line is y = x. In the picture below, the graph of y = sinx

near x = 0 is approximated well by the graph of y = x out to π/4 radians = 45◦.
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We call sinx ≈ x for small x a small-angle approximation. It is illustrated nu-

merically in the table below. The angles are in radians, so .2 = .2 radians ≈ 11.4◦

(multiply by 180/π to convert from radians to degrees).

x .2 .1 .023 .00452 .00059 .000328

sinx .198669 .099833 .022997 .004519 .000589 .0003279

Continuity of sinx at x = 0 tells us sin x → sin 0 = 0 as x → 0. The small-angle

approximation for sinx, which is based on differentiability, is an improvement on what

we learn from continuity: the small-angle approximation tells us how sinx tends to

0 as x → 0: in a linear (first-power) way. Being able to replace the complicated

function sinx with the function x, when x is small, is a convenient approximation in

applications. Another such approximation is cosx ≈ 1 for small x.

Application 1. Small oscillations of a pendulum.

If we set a small pendulum in motion, it oscillates back and forth as shown below.
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If the pendulum is released from rest, then by using Newton’s second law (and ignoring

friction and air drag) the pendulum’s displacement angle θ = θ(t) from a vertical

position varies with time according to the equation

θ′′(t) +
g

L
sin θ(t) = 0 with θ′(0) = 0,

where L is the length of the pendulum and g ≈ 9.8 m/s2 is the acceleration due to

gravity near the surface of the earth. The above equation is analytically hard to solve

for θ(t), but when θ(t) is small (in radians, so 10◦ ≈ .174 radians is small) we can

approximate the term sin θ(t) by θ(t), which leads to the equation

θ′′(t) +
g

L
θ(t) = 0 with θ′(0) = 0,

and this can be solved: θ(t) = θ(0) cos(
√
g/Lt) , where θ(0) is the initial (release)

angle for the pendulum at time t = 0. (Note θ′(t) = −θ(0) sin(
√
g/Lt)

√
g/L, so

θ′(0) = 0, which corresponds to the initial release velocity being 0.) Here are two

interesting observations about the formula for θ(t):

1. Since cosx has values in [−1, 1], the displacement angle θ(0) cos(
√
g/Lt) has

values in [−θ(0), θ(0)]: this means the pendulum returns to its original release

angle but not a higher one. See this with a bowling ball pendulum here.

2. The period T of θ(0) cos(
√
g/Lt) as t varies is1 2π

√
L/g, which is independent of

the release angle θ(0). So the period of a pendulum with different small release

angles have the same period T . See this shown for a few different angles here.

That T does not depend on θ(0) when θ(0) is small is the basis for pendulum

clocks, which were the primary timekeeping mechanism for over 250 years. If

θ(0) is not small, then T does depend on θ(0): such formulas are here, which

are expansions in infinite series (a topic in Math 1132) having 2π
√
L/g as the

first term.

Application 2. Measuring the distance to stars.

The approximation sin θ ≈ θ for small θ is the basis for the parallax method of

estimating the distance between the Earth and other stars (except the Sun). See the

diagram below.

1For A > 0 and c > 0, the period of A cos(cθ) is 2π/c.
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https://www.youtube.com/watch?v=i2GdY1OlDpA
https://www.youtube.com/watch?v=6eAtN4N43-M&t=1m38s
https://en.wikipedia.org/wiki/Pendulum_(mathematics)#Legendre_polynomial_solution_for_the_elliptic_integral
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Stars except the Sun are so far away that to the naked eye they don’t appear to

move at all relative to each other over very long periods of time. This is why ancient

astronomers referred to a background of “fixed stars” against which the planets be-

sides Earth move (the word “planet” is from the Greek term for wanderer). For some

stars, it was possible by the 1800s to detect a small apparent motion relative to the

background of “fixed” stars when observed at different times: the apparent positions

of the same star 6 months apart (meaning the Earth is on opposite sides of the Sun)

sweeps out a very small angle. An analogy you can check in your room is viewing

your finger in front of you with just one eye open and then just the other eye open;

your finger has not physically moved, but it will appear to have moved against the

background wall (or window, etc.).

Let 2θ be the angle a star appears to sweep out over 6 months (this angle is called

the parallax of the star). Since 2θ is so small, the triangle connecting the star to the

positions of the Earth 6 months apart has two sides of nearly equal length d. Treat

the triangle as isoceles with the two equal angles ϕ being nearly 90◦, so sinϕ ≈ 1.

By the Law of sines, sin(2θ)/(2L) = sin(ϕ)/d ≈ 1/d. Since 2θ is very small, we can

say sin(2θ) ≈ 2θ, so
2θ

2L
≈ 1

d
=⇒ d ≈ L

θ
.

This is how d is measured. Since θ is extremely small (so small that it couldn’t be

measured as different from 0 until the 1800s), L/θ is extremely large: astronomical

distances are, well, astronomical! How are distances to stars measured when parallax

stops working? Find out here.

Application 3. Pilot navigation.

If a pilot intends to fly along a certain straight line route but is off from that

direction by a small angle θ, the “1 in 60” rule says that each 1◦ error in direction

leads to a 1 mile error from the planned flight path (1 mile “off track”) for every 60

miles flown. We’ll explain this with the following diagram.
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https://en.wikipedia.org/wiki/Law_of_sines
https://www.youtube.com/watch?v=JWpJjsou99c
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If you want to fly from A due east but travel instead at a small nonzero angle

θ from an eastern direction, then after traveling r miles the (straight line) distance

the plane is from the intended direction is r sin θ, which for small θ (in radians!) is

around rθ. Since 1◦ = π/180 radians, and π/180 ≈ 3/180 = 1/60, we obtain for

r = 60 miles and θ = 1◦ that rθ = 60θ ≈ 1 mile. (The actual distance “off track” is

60 sin(π/180) ≈ 1.047 miles.) Some examples aimed at an audience of pilots is here.

Application 4. Stabilizing an unstable system.

The state of a physical system is called stable if it is unchanging in time and a

small perturbation returns to the original state. An example is a pendulum at rest

hanging from the ceiling, as in Application 1. The state of a system is called unstable

if a small perturbation rapidly moves the system far away from the original state.

An example of an unstable state is a person standing up. You don’t think of that as

unstable, but people who stand make minute corrections automatically, unlike a baby

learning to walk or a very drunk person. Stabilizing an unstable state using real-time

external feedback is important in technology such as quadcopters and self-balancing

transporters (most of the time).

A widely used method of providing external feedback to stabilize an unstable state
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https://www.youtube.com/watch?v=WiXU2OrDeNo


is PID control, where P stands for proportional and D stands for derivative. The I

stands for integral, a calculus topic we’ll meet later this semester.

A nice illustration of proportional and derivative control on an unstable state of

a system is an MIT video here about an inverted pendulum, which is a pendulum

that pivots from the bottom rather than the top. The start of the video discusses

the underlying math. An equation that models an inverted pendulum’s angle from

vertical θ(t), with external feedback, is presented at 6:45:

θ′′(t)− g

L
sin θ(t) = x(t)− a(t)

L
cos θ(t),

where the minus sign in the second term on the left reflects the pendulum being

inverted and the terms on the right side are related to external forces. The lecturer

uses the small-angle approximations sin θ(t) ≈ θ(t) and cos θ(t) ≈ 1 for small θ(t)

(in radians) to simplify the above equation and he then presents a method (called

Laplace transforms, beyond the scope of this course) to solve the equation.

The end of the video, from 29:00 onwards, is the best part: watch how the sim-

plified equation is a good enough model to stabilize an inverted pendulum by placing

it on a rolling cart. Moving the cart is feedback that counteracts changes in θ(t).

Screenshots from the end of the video are below, showing added mass such as a cup

and a pitcher of water on top of the pendulum don’t cause it to tip over. Remarkable!
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https://en.wikipedia.org/wiki/PID_controller
https://www.youtube.com/watch?v=D3bblng-Kcc

