

University of Connecticut Department of Mathematics

Матн 1131

PRACTICE PROBLEMS FOR EXAM 2

Sections Covered: 3.6, 3.8, 3.9, 3.10, 4.1, 4.2, 4.3, 4.4, 4.7, 4.8

Read This First!

- The exam will be 50 minutes, timed, and administered via HuskyCT.
- Please read each question carefully. All questions are multiple choice. There is only one correct choice for each answer.
- On the exam, please carefully check all submitted answers. The submitted letter answers are the **ONLY** place that counts as your official answers.
- You may use a calculator on the exam. No books or other references or are permitted, and you are expected to work independently.

1. What is the recursion from Newton's method for solving $x^2 - 7 = 0$?

(A)
$$x_{n+1} = (x_n^3 - 9x_n)/(x_n^2 - 7)$$
 (B) $x_{n+1} = (x_n^2 + 7)/(2x_n)$ (C) $x_{n+1} = (x_n^2 - 7)/(2x_n)$
(D) $x_{n+1} = (3x_n^2 + 7)/(2x_n)$ (E) $x_{n+1} = (3x_n^2 - 7)/(2x_n)$

2. Find
$$\frac{d}{dx} [\sin(\ln x^2)]$$
.
(A) $\frac{-\cos(\ln(x))}{x^2}$ (B) $\frac{-2\sin(\ln(x^2))}{x^2}$ (C) $\frac{\cos(\ln(x))}{2x^2}$
(D) $\frac{2\cos(\ln(x^2))}{x}$ (E) None of the above

3. Find
$$\frac{d}{dx} [\log_4(3x)]$$
.
(A) $\frac{1}{3x \ln 4}$ (B) $\frac{1}{x \ln 4}$ (C) $\frac{1}{x}$
(D) $\frac{3}{x \ln 4}$ (E) $\frac{3}{x}$

- 4. The size of a colony of bacteria at time t hours is given by $P(t) = 100e^{kt}$, where P is measured in millions. If P(5) > P(0), then determine which of the following is true.
 - I. k > 0II. P'(5) < 0III. $P'(10) = 100ke^{10k}$ (A) I and III only. (B) I and II only. (C) I only.
 - (D) II only. (E) I, II, and III.

- 5. Suppose that the half-life of a certain substance is 20 days and there are initially 10 grams of the substance. The amount of the substance remaining after time t is given by
 - (A) $10e^{10k}$ (B) $\ln(10)e^{kt/10}$ (C) $\ln(10)e^{t/10}$ (D) $10e^{-t\ln(2)/20}$ (E) $10e^{t\ln(2)/20}$

6. Atmospheric pressure (the pressure of air around you) decreases as your height above sea level increases. It decreases exponentially by 12% for every 1000 meters. The pressure at sea level is 1013 hecto pascals. The amount of pressure at any height h is given by,

(A)
$$1000e^{10h}$$
 (B) $\ln(1013)e^{kh/12}$ (C) $1013e^{\ln(0.88)/1000}$
(D) $1000e^{-h\ln(2)/20}$ (E) $1013e^{h\ln(0.88)/1000}$

7. A particle moves along the curve $y = \sqrt[3]{x^4 + 11}$. As it reaches the point (2,3), the *y*-coordinate is increasing at a rate of 32 cm/s. Which of the following represents the rate of increase of the *x*-coordinate at that instant?

(A) 27 cm/s	(B) 9 cm/s	(C) $27/2 \text{ cm/s}$
(D) $67/4 \text{ cm/s}$	(E) None o	of the above

8. Water is withdrawn at a constant rate of 2 ft³/min from an inverted cone-shaped tank (meaning the vertex is at the bottom). The diameter of the top of the tank is 4 ft, and the height of the tank is 8 ft. How fast is the water level falling when the depth of the water in the tank is 2 ft? (Remember that the volume of a cone of height h and radius r is $V = \frac{\pi}{3}r^2h$?)

(A)
$$\frac{2}{\pi}$$
 ft/min (B) $\frac{4}{\pi}$ ft/min (C) $\frac{6}{\pi}$ ft/min
(D) $\frac{8}{\pi}$ ft/min (E) $\frac{16}{\pi}$ ft/min

9. Determine f''(x) for the function $f(x) = \frac{\ln x}{x^2}$.

(A)
$$\frac{-1}{2x^2}$$
 (B) $\frac{6\ln x}{x^4}$ (C) $\frac{1-6\ln x}{x^4}$
(D) $\frac{1-2\ln x}{x^3}$ (E) None of the above

10. Use the linearization for the function $f(x) = \sqrt{x^3 + 2x + 1}$ at x = 1 to approximate the value of f(1.1).

(A)
$$\frac{161}{80}$$
 (B) $\frac{21}{10}$ (C) $\frac{17}{8}$
(D) $\frac{1}{2}$ (E) $\frac{17}{16}$

11. Let $f(x) = x^2 - 10$. If $x_1 = 3$ in Newton's method to solve f(x) = 0, determine x_2 .

(A) 1/2
(B) 19/6
(C) 15/4
(D) 12/7
(E) 17/6

12. Which of the following is the absolute maximum value of the function $f(x) = \frac{x}{x^2 + 4}$ on the interval [0, 4]?

(A)
$$\frac{1}{8}$$
 (B) $\frac{1}{5}$ (C) $\frac{1}{4}$
(D) $\frac{1}{2}$ (E) 1

- 13. Find all value(s) of the number c that satisfy the conclusion of the Mean Value Theorem for the function $f(x) = x^3$ on the interval [0,3], if any exist.
 - (A) 9 (B) $\sqrt{27}$ (C) $\sqrt{3}$
 - (D) 3 (E) No such value of c exists.

14. Find all value(s) of x where $f(x) = 2x^3 + 3x^2 - 12x$ has a local minimum.

(A) 1 (B) -2 (C) -2, 1
(D) -2,
$$\frac{1}{2}$$
 (E) -2, $\frac{1}{2}$, 1

15. How many inflection points does the graph of $f(x) = x^4 - 8x^2 - 7$ have?

- (A) 0 (B) 1 (C) 2
- (D) 3 (E) 4

16. Below is the graph of the *derivative* f'(x) of a function f(x). At what x-value(s) does f(x) have a local maximum or local minimum?

- (A) Local maxima at -3 and 2 and local minima at -1 and 3
- (B) Local maxima at -1 and 3 and local minima at -3 and 2
- (C) Local maxima at -1 and 3 and local minimum at 2
- (D) Local maxima at -3 and 2 and local minimum at -1
- (E) None of the above

- 17. Referring to the same graph of the derivative in question 16, at approximately what x-value(s) is f(x) concave up?
 - (A) x < -1 and x > 1.5
 - (B) -1 < x < 2
 - (C) -2.1 < x < .8 and x > 2.6
 - (D) $-\infty < x < \infty$
 - (E) We cannot determine concavity of f(x) from the graph of f'(x).

18. Below is the graph of the second derivative f''(x) of a function f(x) on the interval [-1,3]. Which of the following statements must be true?

- (A) The function f(x) is concave up when -1 < x < 0.
- (B) The derivative f'(x) is decreasing when 0 < x < 3.
- (C) The function f(x) has a point of inflection at x = 0.
- (D) The derivative f'(x) has a local maximum at x = 0.
- (E) All of the above.

19. On which interval(s) is the function $f(x) = x^4 - 6x^3 + 12x^2 + 1$ concave down?

(A)
$$(-\infty, 1)$$
 only (B) $(1, 2)$ only (C) $(-\infty, -1)$ and $(2, \infty)$
(D) $(2, \infty)$ only (E) $(-\infty, 1)$ and $(2, \infty)$

20. Evaluate the following limit:

(A)
$$+\infty$$
 (B) $-\infty$ (C) 0
(D) $1/2$ (E) $-1/2$

21. Evaluate the following limit:

$$\lim_{x \to \pi/2} \frac{1 - \sin x}{\cos x}.$$

(A) 0 (B) 1 (C)
$$+\infty$$

(D) -1 (E) $1/2$

22. Determine the number of inflection points of the graph of $y = x^2 - \frac{1}{x}$ on its domain.

$$(A) 0 (B) 1 (C) 2 (D) 3 (E) 4$$

- 23. Find two positive numbers x and y satisfying y + 2x = 80 whose product is a maximum.
 - (A) 24, 32 (B) 26, 28 (C) 20, 40
 - (D) 26, 27 (E) None of the above (E) = 1000

24. A box with square base and open top must have a volume of 4000 cm³. If the cost of the material used is $1/cm^2$, then what is the smallest possible cost of the box?

(A) \$500
(B) \$600
(C) \$1000
(D) \$1200
(E) \$2000

25. Which of the following choices for the function f(x) would yield a situation in which the limit could be evaluated using l'Hopital's Rule?

$$\lim_{x \to \infty} \frac{f(x)}{x^2}$$

(A)
$$\sin(x)$$
 (B) e^{-x} (C) $\cos(x)$

(D) $\ln(x)$ (E) All of the above

26. A particle moves along a line with velocity $v(t) = t - \ln(t^2 + 1)$. What is its maximum velocity on the interval $0 \le t \le 2$?

(A)
$$1 - \ln 2$$
 (B) 0 (C) $2 - \ln 5$

(D)
$$\ln 2 - 1$$
 (E) $\ln 5 - 2$

- 27. If f(1) = 9 and $f'(x) \ge 3$ for all x in the interval [1, 4], then what is the smallest possible value of f(4)?
 - (A) 19 (B) 18 (C) 12(D) Cannot be determined (E) None of the above

28. Using the table below, identify all critical numbers for the twice differentiable function f(x) and determine if each critical value is a local maximum, local minimum, or cannot be determined (CBD).

x	-7	-3	-2	0	1	4	6
f(x)	0	0	3	-10	0	25	2
f'(x)	-4	0	0	0	9	0	2
f''(x)	5	1	0	8	-7	-3	0

- (A) Local max at 1 and 4; local min at -7, -3, and 0; CBD at -2 and 6
- (B) Local max at -3 and 0; local min at 4; CBD at -2
- (C) Local max at 4; local min at -3 and 0; CBD at -2
- (D) Local max at 4; local min at 0
- (E) Local max at -7, -3, and 0; local min at 1 and 4; CBD at -2 and 6