

University of Connecticut Department of Mathematics

MATH 1131 PRA

PRACTICE PROBLEMS FOR EXAM 1

Sections Covered: 2.1, 2.2, 2.3, 2.5, 2.6, 2.7, 2.8, 3.1, 3.2, 3.3, 3.4, 3.5

Read This First!

- The exam will be 50 minutes, timed, and administered via HuskyCT.
- Please read each question carefully. All questions are multiple choice. There is only one correct choice for each answer.
- On the exam, please carefully check all submitted answers. The submitted letter answers are the **ONLY** place that counts as your official answers.
- You may use a calculator on the exam. No books or other references or are permitted, and you are expected to work independently.

[1]

- 1. The distance traveled by a particle in t seconds is given by $s(t) = t^2 + 3t$. What is the particle's [1] average velocity over the interval $1 \le t \le 4$?
 - (A) 8 (B) 0 (C) 2
 - (D) 5 (E) -1

2. Evaluate the following limit:

(A) 2 (B) -2 (C) -1
(D)
$$+\infty$$
 (E) $-\infty$

Math 1131

3. Using the table below, what appears to be the value of the limit

x	1.9	1.99	1.999	1.9999	2	2.0001	2.001	2.01	2.1
f(x)	3	7	291	4081	?	-9532	-112	-17	-1
(A) ∞ (B) $-\infty$ (C) 0									

$\lim_{x \to 2^+}$	f(x)
--------------------	------

(D) -1000 (E) None of the above.

4. If lim _{x→3⁺} f(x) = 5 what can be said about lim _{x→3⁻} f(x)?
(A) It must be 5 (B) It must be f(3) (C) It must be f(5)
(D) It must be -5 (E) It cannot be determined

5. If
$$-x^2 - x + 1 \le g(x) \le x^2 - x + 1$$
 for all $x \ne 0$, what is $\lim_{x \to 0} g(x)$?
(A) 0 (B) 1 (C) 2
(D) $g(0)$ (E) Cannot be determined
[1]

[1]

[1]

6. Evaluate the following limit:

$$\lim_{x \to 4} \frac{x^2 - 8x + 16}{x - 4}.$$
(A) 0 (B) 8 (C) -8
(D) +\infty (E) -\infty

7. If $\lim_{x \to 1} f(x) = 3$, $\lim_{x \to 1} g(x) = -2$, and $\lim_{x \to 1} h(x) = 4$, evaluate the limit

8. If the function f(x) is continuous on the interval [-1,3], f(-1) = 1, and f(3) = 11, which [1] numbers below are guaranteed to be values of f(x) by the Intermediate Value Theorem on the interval (-1,3)?

9. Determine the value of the number k that makes the function f(x) below continuous:

$$f(x) = \begin{cases} 1 - kx & \text{if } x < 1, \\ k + x & \text{if } x \ge 1. \end{cases}$$

0 (B) 1 (C) -3/4

(A)

(A) I only

10. Consider the function

$$h(x) = \begin{cases} \frac{1}{x} & \text{if } 0 < x < 1, \\ \\ x & \text{if } x > 1. \end{cases}$$

Which of the following are true?

I.
$$\lim_{x \to 1^+} h(x)$$
 exists
II. $\lim_{x \to 1^-} h(x)$ exists
III. $\lim_{x \to 1^-} h(x)$ exists
IV. $h(x)$ is continuous at $x = 1$
(A) I only (B) I and II only (C) I, II, and III only
(D) IV only (E) I, II, III, and IV

11. Evaluate the following limit:

$$\lim_{x \to \infty} \frac{\sqrt{x^2 + 2}}{x}.$$
(A) $+\infty$ (B) $-\infty$ (C) 0
(D) 1 (E) -1

[1]

12. The function $f(x) = \frac{x^2 + 1}{x^3 + 8}$ has which of the following? (A) no vertical or horizontal asymptotes

(B) 1 vertical asymptote and 1 horizontal asymptote

- (C) 2 vertical asymptotes and 1 horizontal asymptote
- (D) 1 vertical asymptote and 2 horizontal asymptotes
- (E) 1 vertical asymptote and no horizontal asymptotes

13. For what value of the number k is the following function differentiable at x = 0?

$$f(x) = \begin{cases} -x & x \le 0\\ k & x > 0 \end{cases}$$

$$(A) -2 \qquad (B) -1 \qquad (C) \ 0$$

(D) 1 (E) No value of k makes this function differentiable at x = 0

[1]

14. If $f(x) = 3x^{10}$, then $\lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$ is which of the following? (A) f'(x) (B) f'(1) (C) Does not exist

(D) 0 (E) None of the above

15. If we want to calculate the derivative f'(x) of f(x) = 3x + 4 using the limit definition of the [1] derivative which of the following limits do we need to evaluate and to what does the limit evaluate?

(A)
$$\lim_{h \to 0} \frac{3(x+h) + 4 - (3x+4)}{h} = 3$$

(B)
$$\lim_{h \to 0} \frac{3(x+h) + 4 - (3x+4)}{h} = 0$$

(C)
$$\lim_{h \to 0} \frac{3h + 4 - (3x+4)}{h} = 3x + 3$$

(D)
$$\lim_{h \to 0} \frac{3(x+h) + 4 - (3h+4)}{h} = 3$$

(E) None of the above.

16. Below is the graph of the derivative g'(x) of a function g(x).

Figure 1: Graph of g'(x).

Which of the following is a possible graph of g(x)?

(A) (B)

(E) None of the above. It looks like:

17. If $f(x) = \sqrt{x} + \frac{1}{\sqrt{x}}$ for x > 0, then f'(4) is which of the following? (A) $\frac{5}{4}$ (B) $\frac{3}{4}$ (C) $\frac{3}{16}$ (D) $\frac{255}{32}$ (E) $\frac{257}{32}$

18. Determine f'(1) for the function $f(x) = (x^3 - x^2 + 1)(x^4 - x + 2)$.

(A) 3
(B) 0
(C) 4
(D) 2
(E) 5

19. Find the equation of the tangent line to the curve $y = \frac{x}{x+1}$ at x = 1.

(A)
$$y = \frac{1}{2}$$
 (B) $y = -\frac{1}{2}x + 1$ (C) $y = \frac{1}{2}x$
(D) $y = -\frac{1}{4}x + \frac{3}{4}$ (E) $y = \frac{1}{4}x + \frac{1}{4}$

20. If $f(x) = \sin(x)$, determine $f^{(125)}(\pi)$.

(A) 1 (B)
$$-1$$
 (C) 0
(D) $1/2$ (E) $\sqrt{2}/2$

- 21. To compute the derivative of $\sin^2 x$ with the chain rule by writing this function as a composition f(g(x)), what is the "inner" function g(x)?
 - (A) x (B) x^2 (C) $\sin x$ (D) $\sin^2 x$ (E) None of the above

22.	Let $y =$	f(x)g(x).	Using th	e table o	of values	below,	determin	ne the	value of	$\frac{dy}{dx}$	when a	r = 2	2.

x	f(x)	f'(x)	g(x)	g'(x)
1	5	2	4	4
2	3	4	1	3
3	2	3	2	2
4	4	1	5	5
5	1	5	3	1

(A) 9	(B) 12	(C) 13
(D) 15	(E) 23	

23. If $g(x) = \frac{ax+b}{cx+d}$, then g'(1) is which of the following? Note: The numbers a, b, c, and d are constants.

(A)
$$\frac{a+b-c-d}{c+d}$$
 (B) $\frac{ad-bc}{(c+d)^2}$ (C) $\frac{a+b-c-d}{(c+d)^2}$
(D) $\frac{ad+bc}{c+d}$ (E) $\frac{ad+bc}{(c+d)^2}$

24. For the function $f(x) = x^3 \arctan(x)$, which of the following is f'(1)?

(A)
$$\frac{3\pi}{4}$$
 (B) $\frac{3\pi}{4} + \frac{1}{2}$ (C) $\frac{1}{2}$
(D) $\frac{\pi}{4}$ (E) $3\tan(1) + \sec^2(1)$

25. Consider the functions $f(x) = \sin(x^2)$ and $g(x) = \sin^2(x)$. Which of the following is true?

(A)
$$f'(x) = \cos(x^2)$$
 (B) $g'(x) = -2\sin(x)\cos(x)$ (C) $f'(x) = g'(x)$
(D) $f'(\pi) = g'(\pi) = 0$ (E) $f'(0) = g'(0)$

26. If $\frac{d}{dx} [f(4x)] = x^2$, then find f'(x). (A) $\frac{x^2}{64}$ (B) $\frac{x^2}{16}$ (C) $\frac{x^2}{4}$ (D) x^2 (E) $4x^2$

27. Find an equation of the tangent line to the curve $(x^2 + y^2)^2 = 4x^2y$ at the point (1, 1).

(A) y = 1 (B) y = x (C) y = 2x - 1(D) y = -x + 2 (E) y = -2x + 3