Name:		
Discuss	ion Section:	

Solutions should show all of your work, not just a single final answer.

4.1: Maximum and Minimum Values

1. For the following functions, find all critical numbers **exactly**.

(a)
$$f(x) = x^5 - 2x^3$$

(b)
$$f(x) = x - 2\sin x$$
 for $-2\pi < x < 2\pi$

(c)
$$f(x) = e^{-x} - e^{-3x}$$
 for $x > 0$

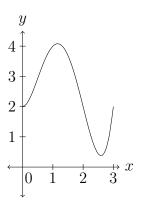
2. Use calculus to find the absolute maximum and minimum values of the following functions on the given intervals. Give your answers **exactly** and show supporting work.

(a)
$$f(x) = x^3 - 2x^2 + x + 1$$
 on $[0, 1]$

(b)
$$f(x) = x^4 - 2x^2 + 4$$
 on $[0, 2]$

(c)
$$f(x) = (7x - 1)e^{-2x}$$
 on $[0, 1]$

3. Below is the graph of $f(x) = x^4 - 5x^3 + 6x^2 + 2$. On the interval [0, 3] determine the maximum and minimum value of the *slope* of the graph, *i.e.*, the maximum and minimum values of g(x) = f'(x).



4. T/F (with justification) If f(x) is a differentiable function on (a, b) and f(x) has a local maximum or minimum value at x = c in (a, b) then f'(c) = 0.

5. T/F (with justification) If f(x) is a differentiable function on (a, b) and f'(c) = 0 for a number c in (a, b) then f(x) has a local maximum or minimum value at x = c.

4.2: Mean Value Theorem

6. Find every number c that satisfies the conclusion of the Mean Value Theorem for the function $f(x) = x^3 - 4x^2 - 5$ on the interval [1, 2].

7. T/F (with justification) The function $1 - \frac{1}{x^4}$ satisfies the hypotheses of Rolle's Theorem on the interval [-1, 1].

8. T/F (with justification) The graph of the semicircle on [-1,1] below fits the hypotheses of the Mean Value Theorem.

