Math 1131 Week 8 Worksheet

Name: \qquad
Discussion Section: \qquad
Solutions should show all of your work, not just a single final answer.

4.1: Maximum and Minimum Values

1. For the following functions, find all critical numbers exactly.
(a) $f(x)=x^{5}-2 x^{3}$
(b) $f(x)=x-2 \sin x$ for $-2 \pi<x<2 \pi$
(c) $f(x)=e^{-x}-e^{-3 x}$ for $x>0$
2. Use calculus to find the absolute maximum and minimum values of the following functions on the given intervals. Give your answers exactly and show supporting work.
(a) $f(x)=x^{3}-2 x^{2}+x+1$ on $[0,1]$
(b) $f(x)=x^{4}-2 x^{2}+4$ on $[0,2]$
(c) $f(x)=(7 x-1) e^{-2 x}$ on $[0,1]$
3. Below is the graph of $f(x)=x^{4}-5 x^{3}+6 x^{2}+2$. On the interval $[0,3]$ determine the maximum and minimum value of the slope of the graph, i.e., the maximum and minimum values of $g(x)=f^{\prime}(x)$.

4. T / F (with justification) If $f(x)$ is a differentiable function on (a, b) and $f(x)$ has a local maximum or minimum value at $x=c$ in (a, b) then $f^{\prime}(c)=0$.
5. T/F (with justification) If $f(x)$ is a differentiable function on (a, b) and $f^{\prime}(c)=0$ for a number c in (a, b) then $f(x)$ has a local maximum or minimum value at $x=c$.

4.2: Mean Value Theorem

6. Find every number c that satisfies the conclusion of the Mean Value Theorem for the function $f(x)=x^{3}-4 x^{2}-5$ on the interval $[1,2]$.
7. T/F (with justification) The function $1-\frac{1}{x^{4}}$ satisfies the hypotheses of Rolle's Theorem on the interval $[-1,1]$.
8. T/F (with justification) The graph of the semicircle on $[-1,1]$ below fits the hypotheses of the Mean Value Theorem.

