Name: \qquad
Discussion Section: \qquad
Solutions should show all of your work, not just a single final answer. 6.2: Volumes

1. Set up, but do not evaluate, a definite integral for the volume of the solid obtained by rotating the region bounded by the given curves about the specified line.
(a) $y=3-x, y=0, x=1, x=2$; about the x-axis
(b) $y=x^{4}-2 x^{2}+1, y=2-2 x^{2}$; about the x-axis
(c) $y^{2}=x, x=2 y$; about the y-axis
2. A solid region has a circular base of radius 3 whose cross-sections perpendicular to the x-axis are equilateral triangles.
(a) Placing the circular base in the plane so it's centered at the origin, determine the side length of the cross-sectional triangle that passes through $(x, 0)$, for $-3 \leq x \leq 3$. (Your final answer will depend on x.) Draw a clear diagram in your solution.
(b) Set up, but do not evaluate, an integral equal to the volume of this solid region. Hint: the area of an equilateral triangle with side length s is $\frac{s^{2}}{4} \sqrt{3}$.
