

University of Connecticut Department of Mathematics

Матн 1131

PRACTICE PROBLEMS FOR EXAM 2

Sections Covered: 3.6, 3.8, 3.9, 3.10, 4.1, 4.2, 4.3, 4.4, 4.7, 4.8, 4.9

Read This First!

- The exam will be 50 minutes, timed, and administered via HuskyCT.
- Please read each question carefully. All questions are multiple choice. There is only one correct choice for each answer.
- On the exam, please carefully check all submitted answers. The submitted letter answers are the **ONLY** place that counts as your official answers.
- You may use a calculator on the exam. No books or other references or are permitted, and you are expected to work independently.

1. What is the recursion from Newton's method for solving $x^2 - 7 = 0$?

$$\begin{array}{l} \text{(A) } x_{n+1} = (x_n^3 - 9x_n)/(x_n^2 - 7) & (\text{(B) } x_{n+1} = (x_n^2 + 7)/(2x_n) \\ \text{(D) } x_{n+1} = (3x_n^2 + 7)/(2x_n) & (\text{E) } x_{n+1} = (3x_n^2 - 7)/(2x_n) \\ \\ \text{X}_{n+1} = X_n - \frac{f(X_n)}{f'(X_n)} & \text{Y}_{n+1} = (X_n^2 - 7)/(2x_n) \\ \\ \text{Y}_{n+1} = X_n - \frac{X_n^2 - 7}{2 \times n} & \text{Y}_{n+1} = X_n - \frac{X_n^2 - 7}{2 \times n} \\ \\ \text{Z}_{n+1} = \frac{2X_n^2 - (X_n^2 - 7)}{2 \times n} \\ \text{Z}_{n$$

4. The size of a colony of bacteria at time t hours is given by $P(t) = 100e^{kt}$, where P is measured in millions. If P(5) > P(0), then determine which of the following is true.

VI.
$$k > 0$$

X $P'(5) < 0$
VIII. $P'(10) = 100ke^{10k}$
(A) I and III only. (B) I and II only. (C) I only.
(D) II only. (E) I, II, and III.
I. P increasing, so $k > 0$
II. P'(t) = $|k P(t)>0$ since $|k>0$ and $P>0 \Rightarrow P'(5b0 \times II. P'(t) = 100 \ ke^{|k|t} \Rightarrow P'(10) = 100 \ ke^{10k}$

5. Suppose that the half-life of a certain substance is 20 days and there are initially 10 grams of the substance. The amount of the substance remaining after time t is given by

(A)
$$10e^{10k}$$
 (B) $\ln(10)e^{kt/10}$ (C) $\ln(10)e^{t/10}$
(D) $10e^{-t\ln(2)/20}$ (E) $10e^{t\ln(2)/20}$
(E) $10e^{t\ln(2)/20}$ (E) $5 = 10e^{1/2}$
(D) $10e^{-t\ln(2)/20}$ (E) $10e^{t\ln(2)/20}$
(E) $10e^{t\ln(2)/20}$ (E) $10e^{t\ln(2)/20}$ (E) $10e^{t\ln(2)/20}$
(E) $10e^{t\ln(2)/20}$ (E) $10e^{t\ln(2)/20}$
(E) $10e^{t\ln(2)/20}$ (E) $10e^{t\ln(2)/20}$ (E) $10e^{t\ln(2)/20}$
(E) $10e^{t\ln(2)/20}$ (E) $10e^{t\ln(2)/20}$ (E) $10e^{t\ln(2)/20}$ (E) $10e^{t\ln(2)/20}$ (E) $10e^{t\ln(2)/20}$ (E) $10e^{t\ln(2)/20}$ (E) $10e^{t\ln(2)/20}$ (E) $10e^{t\ln(2)/20}$ (E) $10e^{t\ln(2)/20}$ (E) $10e^{t\ln(2)/20}$ (E) $10e^{t\ln(2$

6. Atmospheric pressure (the pressure of air around you) decreases as your height above sea level increases. It decreases exponentially by 12% for every 1000 meters. The pressure at sea level is 1013 hecto pascals. The amount of pressure at any height h is given by $(\sqrt{r} = 0)$

(A)
$$1000e^{10h}$$
 (B) $\ln(1013)e^{kh/12}$ (C) $1013e^{\ln(0.88)/1000}$
(D) $1000e^{-h\ln(2)/20}$ (E) $1013e^{h\ln(0.88)/1000}$
A = 10/3 (E) $1013e^{h\ln(0.88)/1000}$
A = t = 1000, $\gamma = .0.88$ A
 $\rightarrow 0.88$ (Lot 5) = $10(3e^{lc}(1000)$
 $\gamma 0.88 = e^{1000k}$
 $\gamma 0.88 = e^{1000k}$

7. A particle moves along the curve $y = \sqrt[3]{x^4 + 11}$. As it reaches the point (2, 3), the *y*-coordinate is increasing at a rate of 32 cm/s. Which of the following represents the rate of increase of the *x*-coordinate at that instant?

$$(h) \frac{27 \text{ cm/s}}{(h) 67/4 \text{ cm/s}} (B) 9 \text{ cm/s} (C) 27/2 \text{ cm/s}$$

$$(b) 67/4 \text{ cm/s} (E) \text{ None of the above}$$

$$y^{3} = x^{4} + ||$$

$$(b) 3y^{2} \frac{dy}{dt} = 4x^{3} \frac{dx}{dt}$$

$$27 \cdot 3y' = 3z' \frac{dx}{dt}$$

$$(c) 27/2 \text{ cm/s}$$

$$(c) 3(3)^{2} (32) = 4(2)^{3} \frac{dx}{dt}$$

$$(c) 3y^{2} \frac{dy}{dt} = 4x^{3} \frac{dx}{dt}$$

$$(c) 3(3)^{2} (32) = 4(2)^{3} \frac{dx}{dt}$$

$$(c) 3y' \frac{dx}{dt} = 27 \text{ cm/s}$$
8. Water is withdrawn at a constant rate of 2ff/min from an inverted cone-shaped tank (meaning the vertex is at the bottom). The diameter of the top of the tank is 4 ft, and the height of the tank is 8 ft. How fast is the water level falling when the depth of the water in the tank is 2 ft?
(Remember that the volume of a cone of height h and radius r is $V - \frac{\pi}{3}r^{2}h^{2}$)
$$W = 2^{3}$$

$$(A) \frac{2}{\pi} \text{ ft/min}$$

$$(B) \frac{4}{\pi} \text{ ft/min}$$

$$(C) \frac{6}{\pi} \text{ ft/min}$$

$$(C) \frac{4W}{dt} = -2yh^{2} + \frac{2}{3} + \frac{$$

10. Use the linearization for the function $f(x) = \sqrt{x^3 + 2x + 1}$ at x = 1 to approximate the value of f(1.1).

$$(A) \frac{161}{80} \quad (B) \frac{21}{10} \quad (C) \frac{17}{8} \quad L(x) = f'(1)(x-1) + f(1)$$

$$(D) \frac{1}{2} \quad (E) \frac{17}{16} \quad f'(x) = \sqrt{1+2+1} = 2$$

$$f'(x) = \frac{1}{2} (x^{3}+2x+1)^{-1/2} (3x^{2}+2)$$

$$f'(1) = \frac{1}{2} (1+2+1)^{-1/2} (3+2)$$

$$= \frac{1}{2} (\frac{1}{2}) (5) = \frac{5}{4}$$

$$F(1,1) \gtrsim L(1,1) = f'(1)(1,1-1) + f(1) = \frac{5}{4} (0,1) + 2$$

$$= \frac{1}{8} + \frac{16}{8} = \frac{17}{\frac{8}{8}}$$

11. Let $f(x) = x^2 - 10$. If $x_1 = 3$ in Newton's method to solve f(x) = 0, determine x_2 .

(A)
$$1/2$$
 (B) $19/6$ (C) $15/4$
(D) $12/7$ (E) $17/6$

$$f'(x) = 2x \rightarrow f'(3) = 6$$

$$f(3) = 9 - 10 = -1$$

$$X_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})} = 3 - \frac{f(3)}{f'(3)} = 3 - \frac{-1}{6} = \frac{18}{6} + \frac{1}{6} = \frac{19}{\frac{6}{6}}$$

12. Which of the following is the absolute maximum value of the function $f(x) = \frac{x}{x^2 + 4}$ on the interval [0, 4]? $1 \qquad 1 \qquad \int \int f'(x) = \frac{(x^2 + 4) \cdot (-x)(2x)}{x^2 + 4}$

(A)
$$\frac{1}{8}$$
 (B) $\frac{1}{5}$ (C) $\frac{1}{4}$ $\mp (x)$ $(\chi^{2}+4)^{2}$
(D) $\frac{1}{2}$ (E) 1 $= \frac{-\chi^{2}+4}{(\chi^{2}+4)^{2}}$
 $Cr'_{1}+\#s; \quad \chi^{2}=4 \rightarrow \chi=\pm 2$
(dinominevir 6)
 $So = f(0) = 0$ $(h = \pi a l)$

$$f(0) = 0$$

$$f(2) = \frac{2}{4+4} = \frac{1}{4}$$

$$f(4) = \frac{4}{16+4} = \frac{1}{5}$$
Page 4

13. Find all value(s) of the number c that satisfy the conclusion of the Mean Value Theorem for the function $f(x) = x^3$ on the interval [0,3], if any exist.

(A) 9 (B)
$$\sqrt{27}$$
 (C) $\sqrt{3}$
(D) 3 (E) No such value of c exists.

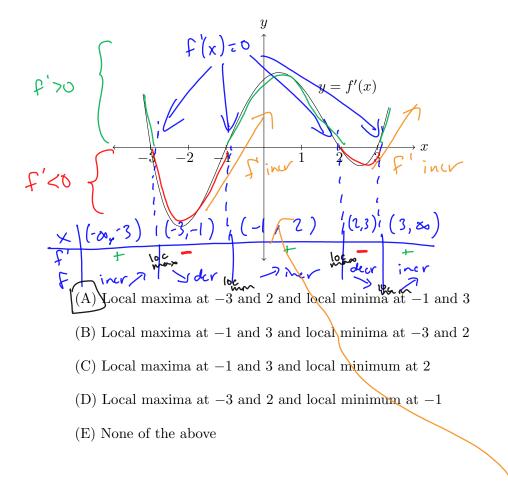
$$\begin{cases} '(c) = \frac{f(3) - F(c)}{3 - 0} \\ 3 - 0 \\ 2 - 3 \\ 0 \\ - 2 - 3 \\ - 2 \\ 0 \\ - 2 \\ - 2 \\ - 1 \\ - 2 \\ - 1 \\ - 2 \\ - 1 \\ - 2 \\ - 1 \\ - 2 \\ - 1 \\ - 2 \\ - 1 \\ - 2 \\ - 1 \\ - 2 \\ - 1 \\ - 2 \\ - 1 \\ - 2 \\ - 1 \\ - 2 \\ - 1 \\ - 2 \\ - 1 \\ - 2 \\ - 1 \\ - 2 \\ - 1 \\ - 2 \\ - 2 \\ - 1 \\ - 2 \\ - 2 \\ - 1 \\ - 2 \\ - 2 \\ - 1 \\ - 2 \\ - 2 \\ - 1 \\ - 2 \\ - 2 \\ - 1 \\ - 2 \\ - 2 \\ - 1 \\ - 2 \\$$

15. How many inflection points does the graph of $f(x) = x^4 - 8x^2 - 7$ have?

(A) 0 (B) 1 (C) 2
$$f'(x) = 4x^3 - 16x$$

(D) 3 (E) 4 $f''(x) = 12x^2 - 16 = 0$ (or parts)
 $\frac{x}{1-x} - \frac{2}{13} + \frac{2}{1$

Below is the graph of the *derivative* f'(x) of a function f(x). At what x-value(s) does f(x)16. have a local maximum or local minimum?



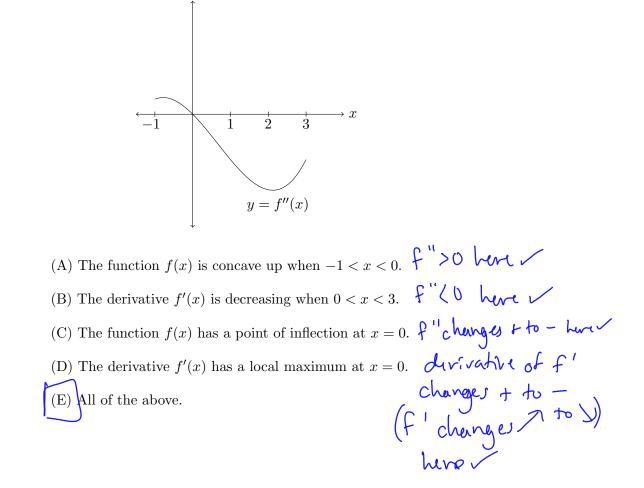
Referring to the same graph of the derivative in question 5, at approximately what x-value(s) 17.

Referring to the same graph of the derivative in question 5, at approximately is f(x) concave up? rightarrow f'' > 0 rightarrow f'' increasing (2 induced 5) rightarrow (A) <math>x < -1 and x > 1.5 (-2.1, 0.8) and (D) 1 < x < 2 (2.6, ∞) (C) -2.1 < x < .8 and x > 2.6(D) $-\infty < x < \infty$

(E) We cannot determine concavity of f(x) from the graph of f'(x).

18. Below is the graph of the *second derivative* f''(x) of a function f(x) on the interval [-1,3]. Which of the following statements must be true?

U



19. On which interval(s) is the function $f(x) = x^4 - 6x^3 + 12x^2 + 1$ concave down?

(A)
$$(-\infty, 1)$$
 only $(B) (1, 2)$ only (C) $(-\infty, -1)$ and $(2, \infty)$
(D) $(2, \infty)$ only (E) $(-\infty, 1)$ and $(2, \infty)$
 $f'(\chi) = 4\chi^{3} - 18\chi^{2} + 24\chi$
 $f''(\chi) = 12\chi^{2} - 36\chi + 24 = 12(\chi^{2} - 3\chi + 2) = 12(\chi - 2)(\chi - 1) = 0$
 $\chi = 2, 1$
 $\chi = 2, 1$
 $\chi = 2, 1$
 $\chi = 2, 1$
 $\chi = 2, 1$

20. Evaluate the following limit:

21. Evaluate the following limit:

$$\lim_{x \to \pi/2} \frac{1 - \sin x}{\cos x} = \frac{2}{5} \frac{1}{5} \text{ Interplane} L + \frac{1}{5} \text{ Solution} + \frac{1}{5} \text{ S$$

22. Determine the number of inflection points of the graph of $y = x^2 - \frac{1}{x}$ on its domain. (A) 0 (B) 1 (C) 2 (D) 3 (E) 4 $y' = 2x + \frac{1}{x^2} - 3y'' = 2 - \frac{1}{x^3}$ y' = 0 or DNE: x = 0 or $2 = \frac{2}{x^2} - 3x^3 = 1 - 3x = 1$ $\frac{x}{y'} = \frac{(-\infty, 0)}{y'} + \frac{1}{x^2} - \frac{1}{x^2} + \frac{1}{x^2} +$

A certain function f(x) satisfies f''(x) = 2 - 3x with f'(0) = -1 and f(0) = 1. Compute f(2). 24.

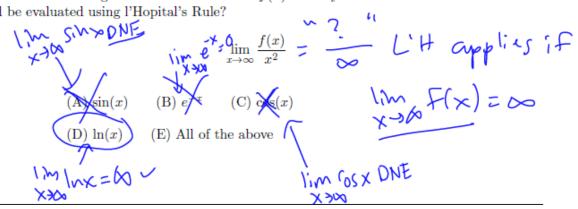
(A)
$$-3$$
 (B) -2 (C) -1
(D) 1 (E) 3
 $f'(x) = 2x - \frac{3}{2} \times \frac{2}{4} + C$, $f'(0) = C = -1$ $\rightarrow f'(x) - 2x - \frac{3}{2} \times \frac{2}{4} - 1$
So $f(x) = x^{2} - \frac{1}{2} \times \frac{3}{4} - x + D$, $f(0) = D = 1 \rightarrow f(x) = x^{2} - \frac{1}{2} \times \frac{3}{4} - x + 1$
 $\rightarrow f(2) = 4 - 4 - 2 + 1 = -1$

A box with square base and open top must have a volume of 4000 cm³. If the cost of the 25. material used is $1/cm^2$, then what is the smallest possible cost of the box?

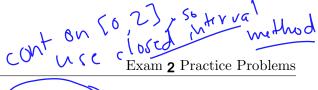
(A) \$500 (B) \$600 (C) \$1000
(D) \$1200 (E) \$2000

$$V = 4000$$
 Cost = (\$1) (area of bottom + sides)
 $Y = \frac{4000}{x^2}$ Cost = (\$1) (area of bottom + sides)
 $Y = \frac{4000}{x^2}$ C'(x) z 2x - $\frac{16000}{x^2}$ = 0 PDNE = $x^2 + 4x(\frac{4000}{x^2}) = x^2 + \frac{16000}{x}$
26. Find $f(x)$ if $f'(x) = 3x^2 + \frac{2}{x}$ for $x > 0$ and $f(1) = 3$.
(A) $x^3 + 2\ln x$ (B) $x^3 - \frac{1}{x} + 3$ (C) $x^3 + 2\ln x + 1$ Somminum
(D) $6x + 2\ln x - 3$ (E) $x^3 + 2\ln x + 2$ $\rightarrow C(2x) = x^2 + 2\ln x + 1$
(D) $6x + 2\ln x - 3$ (E) $x^3 + 2\ln x + 2$ $\rightarrow C(2x) = 1200$
 $f(x) = x^3 + 2\ln x + C$
 $f(x) = x^3 + 2\ln x + C$

Which of the following choices for the function f(x) would yield a situation in which the limit 27. could be evaluated using l'Hopital's Rule?



Math 1131



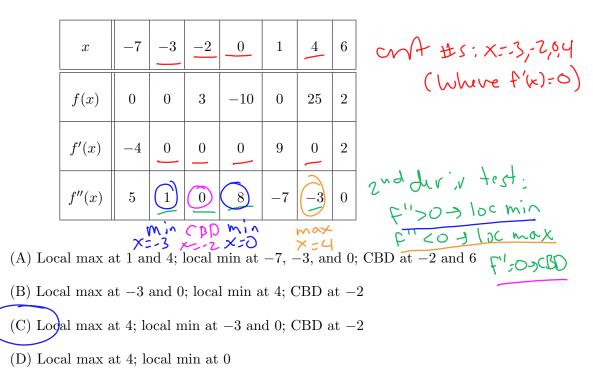
28. A particle moves along a line with velocity $v(t) = t - \ln(t^2 + 1)$. What is its maximum velocity on the interval $0 \le t \le 2$?

(A)
$$1 - \ln 2$$
 (B) 0 (C) $2 - \ln 5$
(D) $\ln 2 - 1$ (E) $\ln 5 - 2$
 $\bigvee (0) = 0 - \ln(1) = 0$ $\lor (2) = 2 - \ln(5) \approx 0.39$
 $\bigvee (1) = |-|\sqrt{2} \approx 0.3|$ $\boxtimes \exp(1) = 0$

29. If f(1) = 9 and $f'(x) \ge 3$ for all x in the interval [1, 4], then what is the smallest possible value

of
$$f(4)$$
?
(A) 19 (B) 18 (C) 12 (C) 12 (C) - $f(4) - f(1)$ for some C in $[1,4]$, so
(A) 19 (B) 18 (C) 12 (C) 12 (C) - $f(4) - f(1)$
(D) Cannot be determined (E) None of the above $\rightarrow f(4) = 3f'(c) + f(1)$
 $= 3f'(c) + 9$

Using the table below, identify all critical numbers for the twice differentiable function f(x) and determine if each critical value is a local maximum, local minimum, or cannot be determined (CBD).



(E) Local max at -7, -3, and 0; local min at 1 and 4; CBD at -2 and 6