
MATH 3094 – FALL 2018 (Tues/Thurs 3:30-4:45pm)
COMBINATORICS OF COXETER GROUPS

A Coxeter group is a collection of “symmetries” that have properties similar to mirror
reflections. The theory of Coxeter groups is a fundamental and active area of research,
with a beautiful interplay of algebraic, combinatorial, and geometric ideas. The symmetric
group, i.e., permutations of n objects, is one of the most basic examples; many facts about
its structure have interesting generalizations to more general Coxeter groups.

This course will provide a gentle introduction to the theory of reflection groups and Coxeter
groups from a combinatorial point of view. We will review necessary background from linear
algebra and group theory and apply them to topics such as root systems, Bruhat order,
reduced words, and classifications of finite reflection groups. While the course is primarily
targeted at mathematics students, the subject matter would be of interest (and possible use)
in the natural sciences.

After the basic material is covered, we will draw some connections to current research topics
in algebraic combinatorics.8 1. The basics

Figure 1.1. Symmetries of the dodecahedron.

Example 1.2.9 Reflection groups. The example of the dodecahedron
shows how a certain finite Coxeter group can be realized as a group of
geometric transformations generated by reflections. This is, in fact, true of
all finite Coxeter groups, not only the ones related to regular polytopes. It
is also true for the infinite Coxeter groups, although here one may need to
relax the concept of reflection.

The two most important classes of infinite Coxeter groups are defined
in terms of their realizations as reflection groups. These are the affine and
hyperbolic Coxeter groups. We will not discuss the precise definitions here;
suffice it to say that they arise from suitably defined reflections in affine
(resp. hyperbolic) space. The irreducible groups of both types have been
classified.

Here are a few low-dimensional examples that should convey the general
idea. There are three affine irreducible Coxeter systems of rank 3: Ã2, C̃2,
and G̃2 (cf. Appendix A1). The corresponding arrangements of reflecting
lines are shown in Figure 1.2. There are infinitely many hyperbolic irre-
ducible Coxeter systems of rank 3 (but only finitely many in higher ranks);
the system of reflecting lines for one of them is shown in Figure 1.3.

Just as for the dodecahedron, the Coxeter generators for these affine
and hyperbolic groups can be taken to be the reflections in the three lines
that border a fundamental region. Furthermore, the Coxeter matrix of the
group can be read off from the angles at which these lines pairwise meet.
For instance, these angles are, in the case of Figure 1.3, respectively π/2,
π/3, and 0 = π/∞. Again, the denominators are the edge labels of the
Coxeter diagram
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Figure 1.2. The eA2, eC2, and eG2 tesselations of the affine plane.

Figure 1.3. The
∞

tesselation of the hyperbolic plane.

Example 1.2.10 Weyl groups of root systems. This example concerns a
special class of groups generated by reflections, which is of great importance
in the theory of semisimple Lie algebras. In that context, the following finite
vector systems in Euclidean space Ed naturally arise. (Recall that Ed is the
same as Rd endowed with a positive definite symmetric bilinear form.)

For α ∈ Ed\{0}, let σα denote the orthogonal reflection in the hyperplane
orthogonal to α. In particular, σα(α) = −α.
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Prerequisites: A course in proof writing (Math 2710: Transition to Advanced Mathematics
or Math 2141Q: Advanced Calculus or CSE 2500: Introduction to Discrete Systems).
Enrollment requires instructor permission.

Questions? Email the instructor, Emily Gunawan, at emily.gunawan@uconn.edu.


