
Math 1131 Applications: Optimization, I

Optimization problems occur in many areas, as shown here. We discuss here a

few such problems that take too long to set up and solve in lecture.

Application 1. Snell’s law.

Light rays bend when traveling from one medium to another, such as air to water.

This causes items placed in or behind water to look shifted, as in the images below.

The bending of a light ray from P1 in air to P2 in water (see below) fits Snell’s

law. It says
sin θ1
sin θ2

=
v1
v2

, where light’s path from P1 to water has angle θ1, light’s

path in water to P2 has angle θ2, light has speed v1 in air and speed v2 in water.

P1

P2

θ1

θ2

The physical basis for Snell’s law is not that light takes the path from P1 to P2

of least distance, since that would be a straight line (θ1 = θ2), but instead that light

follows a path of least time: the two straight lines along which a light ray travels from

P1 to P2 are those for which the combined time along the paths is minimal. Let’s use

calculus to show the path of least time from P1 to P2 satisfies Snell’s law.

We need a few more variables besides the angles, as in the figure below. Let
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• x be the distance from P1 to the line perpendicular to the boundary that passes

through the point where a light ray from P1 meets the boundary,

• h1 be the vertical distance from P1 to the boundary,

• h2 be the vertical distance from P2 to the boundary,

• L be the total horizontal separation between P1 and P2: L = x+ (L− x).
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Let v1 be the speed of light in air and v2 be the speed of light in water. Let the

light ray from P1 to P2 take time t1 to travel from P1 to the boundary and time t2

to travel from the boundary to P2. We can compute the distance from P1 to the

point where the light ray from P1 reaches the boundary in two ways: by the distance

formula with right triangles and by “rate times time”:√
x2 + h21 = v1t1.

Using P2 in place of P1, √
(L− x)2 + h22 = v2t2.

Therefore the total time for the light ray to travel from P1 to P2 is

t1 + t2 =
1

v1

√
x2 + h21 +

1

v2

√
(L− x)2 + h22.

We want an x in [0, L] that minimizes the total time. The only flexible parameter
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is x, so write the total time above as a function of x, say T (x). Its x-derivative is

T ′(x) =
1

v1

2x

2
√
x2 + h21

+
1

v2

2(L− x)(−1)

2
√

(L− x)2 + h22
=

1

v1

x√
x2 + h21

− 1

v2

L− x√
(L− x)2 + h22

,

which is continuous for 0 ≤ x ≤ L. Since T ′(0) = −L/(v2
√
L2 + h22) < 0 and

T ′(L) = L/(v1
√
L2 + h21) > 0, we must have T ′(x) = 0 for some x in (0, L). In fact

there is only one such x since T ′ is increasing on account of T ′ having a positive

derivative: check with the quotient rule that for numbers h > 0,

d

dx

x√
x2 + h2

=
h2

(x2 + h2)3/2
,

d

dx

L− x√
(L− x)2 + h2

=
−h2

((L− x)2 + h2)3/2
,

so

T ′′(x) =
1

v1

h21
(x2 + h21)

3/2
− 1

v2

−h22
((L− x)2 + h22)

3/2

=
1

v1

h21
(x2 + h21)

3/2
+

1

v2

h22
((L− x)2 + h22)

3/2

> 0.

At the critical number x in (0, L) where T ′(x) = 0 we have

1

v1

x√
x2 + h21

=
1

v2

L− x√
(L− x)2 + h22

.

In terms of trigonometry, the left side is (1/v1) sin θ1 and the right side is (1/v2) sin θ2,

so (1/v1) sin θ1 = (1/v2) sin θ2, which is the same as (sin θ1)/(sin θ2) = v1/v2. This

path where T ′(x) = 0 is a minimum of T (x), not a maximum, by the second derivative

test since T ′′(x) > 0. Thus a light ray from P1 to P2 that moves along a path of least

time satisfies Snell’s law
sin θ1
sin θ2

=
v1
v2

.

Snell’s law (based on paths of least time) explains the appearance of a mirage on

a hot road (with θ2 = π/2), behavior of sound waves across a lake and shock waves

moving through different layers of rock.

Application 2. The Kelly criterion (a long-term fractional betting strategy)

Suppose a coin has a probability p to come up heads and a probability q = 1− p
to come up tails, so a fair coin has p = q = 1/2 and a biased coin has p and q not

equal to 1/2. You will bet on the coin coming up heads (“win”) by using a fractional
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betting strategy, which means betting a fixed fraction f (0 ≤ f ≤ 1) of your gambling

money on heads each time. The amount of money available for gambling is called

your bankroll, even if you don’t use all of it on each bet.

Example. Three coin flips come up HHT. Starting with $100 and using f =

1/4, your bankroll after each coin flip is $100 → $125 → $156.25 → $117.19 (after

rounding). If instead f = 1/2 (bet half of what you have on heads each time) then

your bankroll after each flip is $100 → $150 → $225 → $112.50. If instead f = 1

(bet everything you have on heads each time), then you lose all your money the first

time the coin comes up tails, which is a bad long-term strategy unless the coin always

comes up heads.

The optimization question here is: in terms of the coin flip probabilities p (for

heads), what fractional amount f will maximize the long-term expected earnings

with this betting strategy?

Winning a bet increases a bankroll $B to $B + f$B = $((1 + f)B) and losing a

bet decreases a bankroll $B to $B − f$B = $((1 − f)B). Every time you bet the

fraction f of your bankroll, it changes by the factor 1 + f when you win and by the

factor 1 − f when you lose. Therefore when you bet the fraction f of your bankroll

on heads for n successive coin flips starting with $B0, your bankroll $Bn after n coin

flips is given by the formula

$Bn = $(1 + f)Wn(1− f)LnB0,

where the coin is heads (“win”) Wn times and tails (“lose”) Ln times: Wn + Ln = n.

Since the probability of the coin flip being heads is p and being tails is q, for large

n we have Wn/n ≈ p and Ln/n ≈ q, so Wn ≈ pn and Ln ≈ qn. Using these in the

exponents in the formula for Bn above,

Bn ≈ (1 + f)pn(1− f)qnB0 = ((1 + f)p(1− f)q)nB0.

This suggests that to maximize the bankroll $Bn after n coin flips for large n, we

choose f in [0, 1] to maximize (1 + f)p(1− f)q. We finally have a calculus problem:

Find the number f in [0, 1] that maximizes G(f) = (1 + f)p(1− f)q.

The factor G(f) is called the “gain,” which explains the notation G we use here.

That the variable of this function is written as f might feel peculiar (isn’t f always a
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function?), but it is a commonly used notation in this problem and it’s important to

get comfortable working with functions where the variable is not always written as x.

To apply the first derivative test to maximize G(f), we compute G′(f):

G′(f) = p(1 + f)p−1(1− f)q − (1 + f)pq(1− f)q−1

= (1 + f)p−1(1− f)q−1(p(1− f)− q(1 + f))

= (1 + f)p−1(1− f)q−1(p− q − (p+ q)f).

The factors (1 + f)p−1 and (1 − f)q−1 are both positive1 so G′(f) = 0 only when

p− q − (p+ q)f = 0. Since p+ q = 1,

G′(f) = 0⇐⇒ p− q − f = 0⇐⇒ f = p− q = p− (1− p) = 2p− 1.

It is left to the reader to check the critical number f = 2p − 1 is a maximum, not a

minimum, by showing G′′(2p− 1) = −pp−1qq−1/2 < 0.

Using the fractional betting strategy with f = 2p− 1 is called the Kelly criterion.

It should perform better in the long run than any other fractional betting strategy,

and of course depends on knowing p!

Example. If p = .50 then the Kelly criterion says f = 0: the optimal fractional

betting strategy on a fair coin is to bet nothing (the bet has no “edge” to exploit).

Example. If p = .60 (so q = .40) then the Kelly criterion says f = 2p− 1 = .20:

bet 20% of your bankroll.

Example. If p = .75 (so q = .25) then the Kelly criterion says f = 2p− 1 = .50:

bet half of your bankroll.

Example. If p < .50 then the Kelly criterion says f = 2p − 1 < 0. What is a

negative fractional bet? What f < 0 means is that you should use a fractional betting

strategy on heads not coming up (that is, bet on tails) when heads is less likely than

tails. That should make intuitive sense.

Remark. The treatment of the Kelly criterion above assumes the amount won

or lost on a bet is the amount that was bet: if you bet $20 and win then you receive

$20, while if you lose the bet you go down by $20. This doesn’t cover the case of bets

that come with odds, like a 2-to-1 bet where you double your money if you win and

1We could have 1 − f = 0 if f = 1, but that fractional betting strategy only makes sense here
when the coin always comes up heads, and such a sure thing is not a realistic setting where anyone
would be offered a chance to bet, so we will ignore it.
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lose what you bet if you lose. If the betting is structured so that the amount you win

is w times what you bet and the amount you lose is ` times what you bet (so 2-to-1

odds means w = 2 and ` = 1 and betting without odds means w = ` = 1), then a

win on bet of $fB changes your bankroll to $(B + wfB) = $(1 + wf)B and a loss

changes your bankroll to $(B− `fB) = $(1− `f)B. The bankroll after n coin flips is

Bn ≈ (1 + wf)pn(1− `f)qnB0 = ((1 + wf)p(1− `f)q)nB0,

so you want to find f in [0, 1] that maximizes G(f) = (1 +wf)p(1− `f)q. It is left to

the reader to show this occurs at

f =
pw − q`
w`

=
p

`
− q

w
.

This is the Kelly criterion for betting with odds that are no longer 1-to-1. When

w = ` = 1 this formula becomes our earlier formula f = p − q = 2p − 1. (We have

f > 0 when pw > q`. If pw < q` then f < 0 and you should bet on tails coming up.)

Example. If p = .60 (so q = .40), w = 2, and ` = 1 (2-to-1 odds) then f =

p− q/2 = .60− .20 = .40, so bet 40% of your bankroll. In the previous example with

p = .60 and 1-to-1 odds, the Kelly criterion is to bet 20% of your bankroll. It makes

sense that when the odds on heads are 2-to-1, the fractional amount to bet goes up.

Application 3. Viewing angle maximization problem.

Suppose a painting (or movie screen) that is a feet tall is placed on a wall starting

b feet from the ground, as shown below. We want the distance from the wall, in terms

of a and b, that makes the viewing angle from the ground to the painting (or movie

screen) maximal. This problem is due to Regiomontanus in the 1400s.

Since the viewer is below the lowest level of the screen, the viewing angle very

close to the wall is small and the viewing angle very far from the wall is small, so the

largest viewing angle is somewhere in between. Where is it?

b

a

b

a

b

a
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At a distance x from the wall, let θ be the viewing angle (see figure below). If x is

very small or very large then θ is very small, so there is some x where θ is maximal.

x

θ ϕ b

a

Rather than getting a formula for θ in terms of x (and a and b) we will get a

formula for tan θ. At distance x from the wall let ϕ be the angle from the ground to

height b on the wall, so by using right triangles, tanϕ = b/x and tan(θ+ϕ) = (a+b)/x.

We can get tan θ from these using the addition formula tan(α+β) =
tanα + tan β

1− tanα tan β
:

tan θ = tan((θ + ϕ)− ϕ)

=
tan(θ + ϕ) + tan(−ϕ)

1− tan(θ + ϕ) tan(−ϕ)
using α = θ + ϕ, β = −ϕ

=
tan(θ + ϕ)− tanϕ

1 + tan(θ + ϕ) tanϕ
since tan(−ϕ) = − tanϕ

=
(a+ b)/x− b/x

1 + ((a+ b)/x)(b/x)

=
ax

x2 + (a+ b)b
.

We want to maximize θ as x varies over positive numbers. Differentiate both sides

with respect to x:

(sec2 θ)
dθ

dx
=
a(x2 + (a+ b)b)− ax(2x)

(x2 + (a+ b)b)2
=
a((a+ b)b− x2)
(x2 + (a+ b)b)2

.

The term sec2 θ is positive. Since x > 0 we have dθ/dx = 0 ⇐⇒ x =
√

(a+ b)b. If

0 < x <
√

(a+ b)b then dθ/dx > 0, and if x >
√

(a+ b)b then dθ/dx < 0, so at

x =
√

(a+ b)b the angle θ is maximal.

Example. A movie screen 20 feet high is placed on a wall starting at the 10 foot

mark. At what distance from the wall, in feet, is the viewing angle towards the screen

maximal?
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x

θ 10

20

From the work above, the maximal viewing angle occurs when x =
√

(20 + 30)10 =√
500 ≈ 22.36 feet.

Application 4. Optimization is not only something done to functions, but also

to shapes. A Numberphile video about one such problem, called the “moving sofa

problem” (see screenshot below) and still unsolved, is here. During 5:30-6:00 of the

video, the speaker describes a shape being “locally optimal” and that is analogous to

a local maximum or local minimum of a function. If you watch the whole video you’ll

find an unexpected connection to the movie Zoolander.
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