§15.9 Change of Variables in Multiple Integrals

In Calculus I, a useful technique to evaluate many difficult integrals is by using a u-substitution, which is
essentially a change of variable to simplify the integral. Sometimes changing variables can make a huge
difference in evaluating a double integral as well, as we have seen already with polar coordinates. This is

often a helpful technique for triple integrals as well.

In general, say that we have a transformation T'(u, v) = (z,y) that maps a region S to a region £ (see picture
below). All images are taken from Stewart, 8th Edition.
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We define the Jacobian of the transformation T given by z = g(u,v) and y = h(u,v) as
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We can use this notation to approximate the subareas AA of the region R, the image of S under T*
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Dividing the region S in the uv-plane into rectangles S;; and calling their images in the zy-plane R;; (see
picture below), we can approximate the double integral of a function f(z,y). Taking limits of the double

sum, we get the following:
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We have seen an example of this with polar coordinates. In that case, the transformation T'(r,0) = (z,y) is
given by z = g(r,0) = rcosf and y = h(r,§) = rsiné.
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The Jacobian of the transformation T is given by
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Therefore, we have that
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One way to understand the extra factor of r in the integral is to think about how the area of each region
is affected if we change the bounds. If we keep the bounds on 6 the same, say a < 6 < 3, but change the
radius from 1 < r < 2 to 101 < r < 102, the area of the region in terms of z and y dramatically increases,
even though the area of the rectangle in r and 6 would be the same. In short, the bigger the radius, the
bigger the area, so the area is scaled up accordingly.

The Jacobian is defined in a similar manner for a transformation with three variables, say = = g{u,v,w),
y = h(u,v,w), and z = k(u,v,w). Then we have
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In particular, there are similar factors with cylindrical coordinates and spherical coordinates, two examples
of three-variable transformations, which have Jacobians of r and p? sin ¢, respectively.
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One of the most useful applications of a change of variables is simplifying otherwise complicated and/or
tedious integrals. One way to do this is to look at the boundary curves of the region R and see where they
are taken under the transformation T'. Looking at the boundary of R allows us to determine the region S
and use the Jacobian to compute the integral in a different way.

Example 1: Use the transformation given by ¢ = 2u + v, y = u + 2v to compute the double integral
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Example 2: Use the transformation given by z = 2u, y = 3v to compute the double integral JJ 22 dA, where
R

R is the region bounded by the ellipse 922 + 4y = 36.
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