Cylindrical Triple Integrals

- 1. Compute $\iiint_E yz \ dV$, where E is the region above z=0, below z=y, and inside $x^2+y^2=4$.
- 2. Find the volume contained above $z = x^2 + y^2$ and below $z = \sqrt{x^2 + y^2}$.
- 3. Compute $\iiint_E y^2 z^2 dV$, where E is the region bounded by $x = 1 y^2 z^2$ and x = 0.

Hint: You might be able to make use of the fact that $\int \cos^2 t \sin^2 t \ dt = \frac{1}{32} (4t - \sin(4t)) + C$

4. Sketch the solid whose volume is given by the iterated integral.

(a)
$$\int_{\pi/2}^{3\pi/2} \int_{0}^{4} \int_{-1}^{2} r \, dz \, dr \, d\theta$$

(b)
$$\int_{-\pi/2}^{\pi/2} \int_{0}^{2} \int_{r^{2}}^{4} r \, dz \, dr \, d\theta$$

(c)
$$\int_{0}^{2} \int_{0}^{2\pi} \int_{0}^{r} r \, dz \, d\theta \, dr$$

Answers

- 1. $\frac{64}{15}$
- 2. $\frac{\pi}{6}$ 3. $\frac{\pi}{96}$