
§14.8 Lagrange Multipliers
In Calculus I, we first learned how to find and classify critical points, which allow us to find the location of
local maxima and minima. We also discussed the application of finding the absolute maximum and minimum
values of a function y “ fpxq over a closed interval ra, bs. Recall that the absolute maximum and minimum
can only occur at either critical points or at the endpoints of the interval but nowhere else, assuming that
fpxq is continuous on ra, bs. This is known as the Extreme Value Theorem, and our goal is to now extend
these ideas to functions of two or more variables.

Once again, it should be clear that an absolute maximum or minimum value can occur at a critical point,
but what corresponds to the endpoints? First, absolute extrema are only guaranteed to exist over a set D
that is both closed and bounded. What does that mean? A set D is called closed if it includes its boundary.
For example, the set defined by x2 ` y2 ď 1 is closed, but x2 ` y2 ă 1 is not (the latter set would have a
dashed circle for its boundary while the first would be solid). A set D is called bounded if it doesn’t extend
infinitely in any direction. Mathematically, this is equivalent to being able to fit the set D inside of a disk
with some finite radius.

We can now state the Extreme Value Theorem for a function of two variables. If fpx, yq is continuous on a
closed, bounded set D in the plane, then f will attain an absolute maximum and minimum value at either
a critical point inside D or on the boundary of the set D.

In the event that the boundary curve of a set D is given by one equation, the computations can still be
tedious, but we can use another method to find the absolute maximum and minimum values. This curve
can be thought of as a level curve of some function gpx, yq, so we write the curve as gpx, yq “ k (for some
constant k). This is called a constraint, and solving many real-world problems goes hand-in-hand with
solving constrained optimization problems.

The method that we will use is called the method of Lagrange multipliers, which essentially relies on
the observation that a function fpx, yq is maximized or minimized over a curve gpx, yq “ k whenever the
functions’ gradient vectors are parallel at a point on the curve (see the images in Section 14.8 of our textbook
for a nice illustration of this). This works for functions defined with any number of variables, but we will
state the system in the case of two variables. Namely, given a function fpx, yq that we wish to maximize or
minimize and a constraint gpx, yq “ k, we seek solutions to the system of equations

~∇fpx, yq “ λ ¨ ~∇gpx, yq
gpx, yq “ k

Here, λ is a constant, called a Lagrange multiplier. Also, note that ~∇f “ λ~∇g is really two equations:
fx “ λgx and fy “ λgy, which come from the corresponding components of the gradient vectors.

So, for a function fpx, yq with constraint curve gpx, yq “ k, we really wish to solve the system
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fx “ λgx

fy “ λgy

gpx, yq “ k
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Example 1: Find the absolute maximum and minimum values of fpx, yq “ xy2 on x2 ` y2 “ 3.
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Example 2: Find the maximum and minimum values of fpx, yq “ 3x`y subject to the constraint x2`y2 “ 10.
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Sometimes we only obtain one value from this method, meaning that there is either a maximum with no
minimum or vice versa. It is then important to check analytically to determine which one has been found.

Example 3: Find the maximum and minimum values of fpx, yq “ x2 ` y2 subject to the constraint xy “ 1.
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