Math 1131
Practice Problems for Exam 1

Sections Covered: 2.1, 2.2, 2.3, 2.5, 2.6, 2.7, 2.8, 3.1

Read This First!

- Please arrive early and bring a pencil and eraser.
- Please read each question carefully. All questions are multiple choice. There is only one correct choice for each answer.
- On the exam, indicate your answers on the answer sheet. The answer sheet is the ONLY place that counts as your official answers.
- Calculators are NOT allowed on the exam. No books or other references or electronic devices are permitted.

1. The distance traveled by a particle in t seconds is given by $s(t)=t^{2}+3 t$. What is the particle's average velocity over the interval $1 \leq t \leq 4$?
(A) 8
(B) 0
(C) 2
(D) 5
(E) -1
2. Evaluate the following limit:

$$
\lim _{x \rightarrow 1^{-}} \frac{x-3}{x-1} .
$$

(A) 2
(B) -2
(C) -1
(D) $+\infty$
(E) $-\infty$
3. Using the table below, what appears to be the value of the limit

$$
\lim _{x \rightarrow 2^{+}} f(x)
$$

x	1.9	1.99	1.999	1.9999	2	2.0001	2.001	2.01	2.1
$f(x)$	3	7	291	4081	$?$	-9532	-112	-17	-1

(A) ∞
(B) $-\infty$
(C) 0
(D) -1000
(E) None of the above.
4. If $\lim _{x \rightarrow 3^{+}} f(x)=5$ what can be said about $\lim _{x \rightarrow 3^{-}} f(x)$?
(A) It must be 5
(B) It must be $f(3)$
(C) It must be $f(5)$
(D) It must be -5
(E) It cannot be determined
5. If $-x^{2}-x+1 \leq g(x) \leq x^{2}-x+1$ for all $x \neq 0$, what is $\lim _{x \rightarrow 0} g(x)$?
(A) 0
(B) 1
(C) 2
(D) $g(0)$
(E) Cannot be determined
6. Evaluate the following limit:

$$
\lim _{x \rightarrow 4} \frac{x^{2}-8 x+16}{x-4}
$$

(A) 0
(B) 8
(C) -8
(D) $+\infty$
(E) $-\infty$
7. If $\lim _{x \rightarrow 1} f(x)=3, \lim _{x \rightarrow 1} g(x)=-2$, and $\lim _{x \rightarrow 1} h(x)=4$, evaluate the limit

$$
\lim _{x \rightarrow 1}\left(\frac{2 f(x)}{g(x)}+\sqrt{h(x)}\right) .
$$

(A) -1
(B) 3
(C) 13
(D) 5
(E) 7
8. If the function $f(x)$ is continuous on the interval $[-1,3], f(-1)=1$, and $f(3)=11$, which numbers below are guaranteed to be values of $f(x)$ by the Intermediate Value Theorem on the interval $(-1,3)$?
I. 3
II. $\sqrt{2}$
III. 3π
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III
9. Determine the value of the number k that makes the function $f(x)$ below continuous:

$$
f(x)= \begin{cases}1-k x & \text { if } x<1 \\ k+x & \text { if } x \geq 1\end{cases}
$$

(A) 0
(B) 1
(C) $-3 / 4$
(D) $1 / 2$
(E) $15 / 17$
10. Consider the function

$$
h(x)= \begin{cases}\frac{1}{x} & \text { if } 0<x<1, \\ x & \text { if } x>1\end{cases}
$$

Which of the following are true?
I. $\lim _{x \rightarrow 1^{+}} h(x)$ exists
II. $\lim _{x \rightarrow 1^{-}} h(x)$ exists
III. $\lim _{x \rightarrow 1} h(x)$ exists
IV. $h(x)$ is continuous at $x=1$
(A) I only
(B) I and II only
(C) I, II, and III only
(D) IV only
(E) I, II, III, and IV
11. Evaluate the following limit:

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+2}}{x}
$$

(A) $+\infty$
(B) $-\infty$
(C) 0
(D) 1
(E) -1
12. The function $f(x)=\frac{x^{2}+1}{x^{3}+8}$ has which of the following?
(A) no vertical or horizontal asymptotes
(B) 1 vertical asymptote and 1 horizontal asymptote
(C) 2 vertical asymptotes and 1 horizontal asymptote
(D) 1 vertical asymptote and 2 horizontal asymptotes
(E) 1 vertical asymptote and no horizontal asymptotes
13. For what value of the number k is the following function differentiable at $x=0$?

$$
f(x)= \begin{cases}-x & x \leq 0 \\ k & x>0\end{cases}
$$

(A) -2
(B) -1
(C) 0
(D) 1
(E) No value of k makes this function differentiable at $x=0$
14. If $f(x)=3 x^{10}$, then $\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$ is which of the following?
(A) $f^{\prime}(x)$
(B) $f^{\prime}(1)$
(C) Does not exist
(D) 0
(E) None of the above
15. If we want to calculate the derivative $f^{\prime}(x)$ of $f(x)=3 x+4$ using the limit definition of the derivative which of the following limits do we need to evaluate and to what does the limit evaluate?
(A) $\lim _{h \rightarrow 0} \frac{3(x+h)+4-(3 x+4)}{h}=3$
(B) $\lim _{h \rightarrow 0} \frac{3(x+h)+4-(3 x+4)}{h}=0$
(C) $\lim _{h \rightarrow 0} \frac{3 h+4-(3 x+4)}{h}=3 x+3$
(D) $\lim _{h \rightarrow 0} \frac{3(x+h)+4-(3 h+4)}{h}=3$
(E) None of the above.
16. Below is the graph of the derivative $g^{\prime}(x)$ of a function $g(x)$.

Figure 1: Graph of $g^{\prime}(x)$.
Which of the following is a possible graph of $g(x)$?
(A)

(B)

(C)

(D)

(E) None of the above. It looks like:
17. If $f(x)=\sqrt{x}+\frac{1}{\sqrt{x}}$ for $x>0$, then $f^{\prime}(4)$ is which of the following?
(A) $\frac{5}{4}$
(B) $\frac{3}{4}$
(C) $\frac{3}{16}$
(D) $\frac{255}{32}$
(E) $\frac{257}{32}$

