

University of Connecticut Department of Mathematics

Матн 1131

EXAM 2 PRACTICE QUESTIONS

Fall 2019

Sections Covered: 3.2, 3.3, 3.4, 3.5, 3.6, 3.8, 3.9, 3.10, 4.8

Read This First!

- The exam will take place in your discussion section meeting on **Thursday**, **October 17**. Please arrive early and bring a pencil and eraser.
- Please read each question carefully. All questions are multiple choice. There is only one correct choice for each answer.
- On the exam, indicate your answers on the answer sheet. The answer sheet is the **ONLY** place that counts as your official answers.
- Calculators are NOT allowed on the exam. No books or other references or electronic devices are permitted.

- 1. Determine f'(1) for the function $f(x) = (x^3 x^2 + 1)(x^4 x + 2)$.
 - (A) 3
 (B) 0
 (C) 4
 (D) 2
 (E) 5

2. Find the equation of the tangent line to the curve $y = \frac{x}{x+1}$ at x = 1.

(A)
$$y = \frac{1}{2}$$
 (B) $y = -\frac{1}{2}x + 1$ (C) $y = \frac{1}{2}x$
(D) $y = -\frac{1}{4}x + \frac{3}{4}$ (E) $y = \frac{1}{4}x + \frac{1}{4}$

3. If $f(x) = \sin(x)$, determine $f^{(125)}(\pi)$.

(A) 1 (B)
$$-1$$
 (C) 0
(D) $1/2$ (E) $\sqrt{2}/2$

4. To compute the derivative of $\sin^2 x$ with the chain rule by writing this function as a composition f(g(x)), what is the "inner" function f(x)?

(A)
$$x$$
 (B) x^2 (C) $\sin x$

(D)
$$\sin^2 x$$
 (E) None of the above

x	f(x)	f'(x)	g(x)	g'(x)
1	5	2	4	4
2	3	4	1	3
3	2	3	2	2
4	4	1	5	5
5	1	5	3	1

5. Let y = f(x)g(x). Using the table of values below, determine the value of $\frac{dy}{dx}$ when x = 2.

(A) 9	(B) 12	(C) 13
(D) 15	(E) 23	

6. What is the recursion from Newton's method for solving $x^2 - 7 = 0$?

(A)
$$x_{n+1} = (x_n^3 - 9x_n)/(x_n^2 - 7)$$
 (B) $x_{n+1} = (x_n^2 + 7)/(2x_n)$ (C) $x_{n+1} = (x_n^2 - 7)/(2x_n)$
(D) $x_{n+1} = (3x_n^2 + 7)/(2x_n)$ (E) $x_{n+1} = (3x_n^2 - 7)/(2x_n)$

7. If $g(x) = \frac{ax+b}{cx+d}$, then g'(1) is which of the following? Note: The numbers a, b, c, and d are constants.

(A)
$$\frac{a+b-c-d}{c+d}$$
 (B) $\frac{ad-bc}{(c+d)^2}$ (C) $\frac{a+b-c-d}{(c+d)^2}$
(D) $\frac{ad+bc}{c+d}$ (E) $\frac{ad+bc}{(c+d)^2}$

8. For the function $f(x) = x^3 \arctan(x)$, which of the following is f'(1)?

(A)
$$\frac{3\pi}{4}$$
 (B) $\frac{3\pi}{4} + \frac{1}{2}$ (C) $\frac{1}{2}$
(D) $\frac{\pi}{4}$ (E) $3\tan(1) + \sec^2(1)$

9. Consider the functions $f(x) = \sin(x^2)$ and $g(x) = \sin^2(x)$. Which of the following is true?

(A)
$$f'(x) = \cos(x^2)$$
 (B) $g'(x) = -2\sin(x)\cos(x)$ (C) $f'(x) = g'(x)$
(D) $f'(\pi) = g'(\pi) = 0$ (E) $f'(0) = g'(0)$

10. If
$$\frac{d}{dx} [f(4x)] = x^2$$
, then find $f'(x)$.
(A) $\frac{x^2}{64}$ (B) $\frac{x^2}{16}$ (C) $\frac{x^2}{4}$
(D) x^2 (E) $4x^2$

11. Find
$$\frac{d}{dx} \left[x^{\ln x} \right]$$
.
(A) $(\ln x) x^{\ln x}$ (B) $2(\ln x) x^{(\ln x)+1}$ (C) $x^{(\ln x)-1}$
(D) $2(\ln x) x^{\ln x}$ (E) $2(\ln x) x^{(\ln x)-1}$

12. Find an equation of the tangent line to the curve $(x^2 + y^2)^2 = 4x^2y$ at the point (1, 1).

(A) y = 1 (B) y = x (C) y = 2x - 1(D) y = -x + 2 (E) y = -2x + 3 13. The size of a colony of bacteria at time t hours is given by $P(t) = 100e^{kt}$, where P is measured in millions. If P(5) > P(0), then determine which of the following is true.

I.
$$k > 0$$

II. $P'(5) < 0$
III. $P'(10) = 100ke^{10k}$
(A) I and III only. (B) I and II only. (C) I only.
(D) II only. (E) I, II, and III.

14. Suppose that the half-life of a certain substance is 20 days and there are initially 10 grams of the substance. The amount of the substance remaining after time t is given by

(A) $10e^{10k}$ (B) $\ln(10)e^{kt/10}$ (C) $\ln(10)e^{t/10}$ (D) $10e^{-t\ln(2)/20}$ (E) $10e^{t\ln(2)/20}$

15. Atmospheric pressure (the pressure of air around you) decreases as your height above sea level increases. It decreases exponentially by 12% for every 1000 meters. The pressure at sea level is 1013 hecto pascals. The amount of pressure at any height h is given by,

(A)
$$1000e^{10h}$$
 (B) $\ln(1013)e^{kh/12}$ (C) $1013e^{\ln(0.88)/1000}$
(D) $1000e^{-h\ln(2)/20}$ (E) $1013e^{h\ln(0.88)/1000}$

- 16. A particle moves along the curve $y = \sqrt[3]{x^4 + 11}$. As it reaches the point (2, 3), the *y*-coordinate is increasing at a rate of 32 cm/s. Which of the following represents the rate of increase of the *x*-coordinate at that instant?
 - (A) 27 cm/s (B) 9 cm/s (C) 13.5 cm/s
 - (D) 6.75 cm/s (E) None of the above

17. Water is withdrawn at a constant rate of 2 ft³/min from an inverted cone-shaped tank (meaning the vertex is at the bottom). The diameter of the top of the tank is 4 ft, and the height of the tank is 8 ft. How fast is the water level falling when the depth of the water in the tank is 2 ft? (Remember that the volume of a cone of height h and radius r is $V = \frac{\pi}{3}r^2h$?)

(A)
$$\frac{2}{\pi}$$
 ft/min (B) $\frac{4}{\pi}$ ft/min (C) $\frac{6}{\pi}$ ft/min
(D) $\frac{8}{\pi}$ ft/min (E) $\frac{16}{\pi}$ ft/min

18. Determine f''(x) for the function $f(x) = \frac{\ln x}{x^2}$. (A) $\frac{-1}{2x^2}$ (B) $\frac{6\ln x}{x^4}$ (C) $\frac{1-6\ln x}{x^4}$ (D) $\frac{1-2\ln x}{x^3}$ (E) None of the above

- 19. Use the linearization for the function $f(x) = \sqrt{x^3 + 2x + 1}$ at x = 1 to approximate the value of f(1.1).
 - (A) 2.0125
 (B) 2.10
 (C) 2.125
 (D) 0.5
 (E) 1.925

20. Let $f(x) = x^2 - 10$. If $x_1 = 3$ in Newton's method to solve f(x) = 0, determine x_2 .

- (A) 1/2 (B) 19/6 (C) 15/4
- (D) 12/7 (E) 17/6