

University of Connecticut Department of Mathematics

Матн 1131

EXAM 3 PRACTICE PROBLEMS

Fall 2019

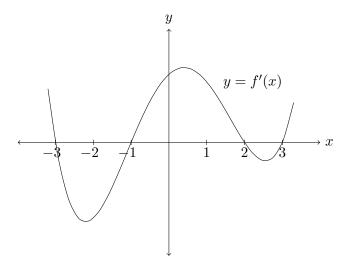
Sections Covered: 4.1-4.4, 4.7, 4.9, 5.1-5.3

Read This First!

- The exam will take place in your discussion section meeting on **Thursday**, **November 14**. Please arrive early and bring a pencil and eraser.
- Please read each question carefully. All questions are multiple choice. There is only one correct choice for each answer.
- On the exam, indicate your answers on the answer sheet. The answer sheet is the **ONLY** place that counts as your official answers.
- Calculators are NOT allowed on the exam. No books or other references or electronic devices are permitted.

1. Which of the following is the absolute maximum value of the function $f(x) = \frac{x}{x^2 + 4}$ on the interval [0, 4]?

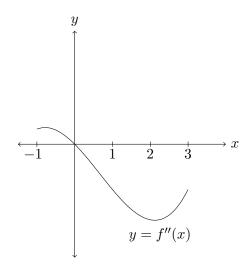
(A)
$$\frac{1}{8}$$
 (B) $\frac{1}{5}$ (C) $\frac{1}{4}$
(D) $\frac{1}{2}$ (E) 1


- 2. Find all value(s) of the number c that satisfy the conclusion of the Mean Value Theorem for the function $f(x) = x^3$ on the interval [0,3], if any exist.
 - (A) 9 (B) $\sqrt{27}$ (C) $\sqrt{3}$
 - (D) 3 (E) No such value of c exists.

3. Find all value(s) of x where $f(x) = 2x^3 + 3x^2 - 12x$ has a local minimum.

(A) 1 (B)
$$-2$$
 (C) -2 , 1
(D) -2 , $\frac{1}{2}$ (E) -2 , $\frac{1}{2}$, 1

- 4. How many inflection points does the graph of $f(x) = x^4 8x^2 7$ have?
 - $(A) 0 \qquad (B) 1 \qquad (C) 2$
 - (D) 3 (E) 4


5. Below is the graph of the *derivative* f'(x) of a function f(x). At what x-value(s) does f(x) have a local maximum or local minimum?

- (A) Local maxima at -3 and 2 and local minima at -1 and 3
- (B) Local maxima at -1 and 3 and local minima at -3 and 2
- (C) Local maxima at -1 and 3 and local minimum at 2
- (D) Local maxima at -3 and 2 and local minimum at -1
- (E) None of the above

- 6. Referring to the same graph of the derivative in question 5, at approximately what x-value(s) is f(x) concave up?
 - (A) x < -1 and x > 1.5
 - (B) -1 < x < 2
 - (C) -2.1 < x < .8 and x > 2.6
 - (D) $-\infty < x < \infty$
 - (E) We cannot determine concavity of f(x) from the graph of f'(x).

7. Below is the graph of the second derivative f''(x) of a function f(x) on the interval [-1,3]. Which of the following statements must be true?

- (A) The function f(x) is concave up when -1 < x < 0.
- (B) The derivative f'(x) is decreasing when 0 < x < 3.
- (C) The function f(x) has a point of inflection at x = 0.
- (D) The derivative f'(x) has a local maximum at x = 0.
- (E) All of the above.

8. On which interval(s) is the function $f(x) = x^4 - 6x^3 + 12x^2 + 1$ concave down?

(A)
$$(-\infty, 1)$$
 only (B) $(1, 2)$ only (C) $(-\infty, -1)$ and $(2, \infty)$
(D) $(2, \infty)$ only (E) $(-\infty, 1)$ and $(2, \infty)$

9. Evaluate the following limit:

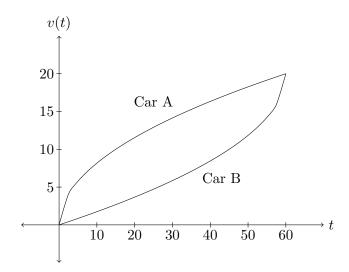
(A)
$$+\infty$$
 (B) $-\infty$ (C) 0
(D) $1/2$ (E) $-1/2$

10. Evaluate the following limit:

$$\lim_{x \to \pi/2} \frac{1 - \sin x}{\cos x}.$$

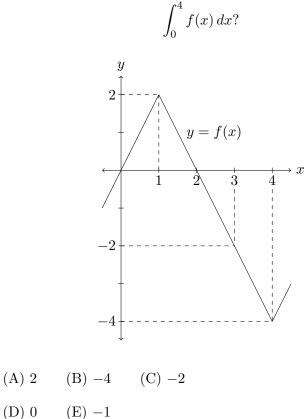
(A) 0 (B) 1 (C)
$$+\infty$$

(D) -1 (E) $1/2$


11. Determine the number of inflection points of the graph of $y = x^2 - \frac{1}{x}$ on its domain.

12. Find two positive numbers x and y satisfying y + 2x = 80 whose product is a maximum.

- (A) 24, 32 (B) 26, 28 (C) 20, 40
- (D) 26, 27 (E) None of the above (E)


- 13. A certain function f(x) satisfies f''(x) = 2 3x with f'(0) = -1 and f(0) = 1. Compute f(2).
 - (A) -3 (B) -2 (C) -1
 - (D) 1 (E) 3

14. Below is the graph of the velocity (measured in ft/sec) over the interval $0 \le t \le 60$ for two cars, Car A and Car B. How do the distances traveled by each compare at over this interval?

- (A) Car A has traveled further than Car B
- (B) Car B has traveled further than Car A
- (C) Car A and Car B have traveled the same distance
- (D) Cannot be determined because we don't know the equations of the cars' position curves
- (E) Cannot be determined because we don't know the equations of the cars' velocity curves

15. If we use a right endpoint approximation with four subintervals (i.e., R_4), then what is the resulting approximation for

16. Evaluate the definite integral $\int_{-1}^{1} (x^2 + 2x + 1) dx$. (A) 8/3 (B) -1 (C) 5/3 (D) -5/3 (E) 0

17. Assume that
$$\int_{-2}^{3} f(x) dx = 4$$
. What is the value of $\int_{-2}^{3} (f(x) + 1) dx$?
(A) 4 (B) 5 (C) 6
(D) 9 (E) 20

18. Which of the following is the derivative of the function

$$f(x) = \int_{1}^{x^{2}} \frac{1}{t^{3} + 1} dt?$$
(A) $\frac{2x}{x^{6} + 1}$ (B) $\frac{1}{x^{6} + 1}$ (C) $\frac{2x}{x^{5} + 1}$
(D) $\frac{1}{x^{3} + 1}$ (E) $\frac{2x}{x^{3} + 1}$

- 19. A box with square base and open top must have a volume of 4000 cm³. If the cost of the material used is $1/cm^2$, then what is the smallest possible cost of the box?
 - (A) \$500
 (B) \$600
 (C) \$1000
 (D) \$1200
 (E) \$2000

20. Find
$$f(x)$$
 if $f'(x) = 3x^2 + \frac{2}{x}$ for $x > 0$ and $f(1) = 3$.
(A) $x^3 + 2 \ln x$ (B) $x^3 - \frac{1}{x} + 3$ (C) $x^3 + 2 \ln x + 1$
(D) $6x + 2 \ln x - 3$ (E) $x^3 + 2 \ln x + 2$