Матн 1131	PRACTICE PROBLEMS FOR EX	FALL 2019	
Name:			
Signature:			
Instructor Name		Lactura Sactio	n.
TA Name:		Discussion Section	

Read This First!

- This problem set is not meant to provide complete coverage for the exam. It is designed for you to use as a diagnostic tool. If you struggle with a problem here, that gives you a topic to review and work several related problems. You should also be using homework, worksheets, and quizzes as a guide to determine what topics to review for the exam.
- The exam format and instructions will be similar to those in this document.
- Please read each question carefully. All questions are multiple choice. There is only one correct choice for each answer. Each question is one point.
- Indicate your answers on the answer sheet. The answer sheet is the **ONLY** place that counts as your official answers.
 - (1) When you're done, hand in **both** the exam booklet and the answer sheet.
 - (2) You will receive the exam booklet back after the exam is graded. The booklet is not graded, but you may circle answers there for your records.
- No calculators are allowed. No books or other references are permitted.

- 1. The distance traveled by a particle in t seconds is given by $s(t) = t^2 + 3t$. What is the particle's [1] average velocity over the interval $1 \le t \le 4$?
 - (A) 8
- (B) 0 (C) 2
- (D) 5
- (E) -1

2. Evaluate the following limit:

$$\lim_{x \to 1^{-}} \frac{x-3}{x-1}$$

- (A) 2
- (B) -2
- (C) -1
- (D) $+\infty$
- (E) $-\infty$

[1]

[1]

3. Using the table below, what appears to be the value of the limit

 $\lim_{x \to 2^+} f(x)$

x	1.9	1.99	1.999	1.9999	2	2.0001	2.001	2.01	2.1
f(x)	3	7	291	4081	?	-9532	-112	-17	-1

- (A) ∞
- (B) $-\infty$
- (C) 0
- (D) -1000
- (E) None of the above.

4. If $\lim_{x\to 3^+} f(x) = 5$ what can be said about $\lim_{x\to 3^-} f(x)$?

(A) It must be 5

- (B) It must be f(3)
- (C) It must be f(5)

- (D) It must be -5
- (E) It cannot be determined

- 5. If $-x^2 x + 1 \le g(x) \le x^2 x + 1$ for all $x \ne 0$, what is $\lim_{x \to 0} g(x)$?
 - (A) 0
- (B) 1
- (C) 2
- (D) g(0)
- (E) Cannot be determined

[1]

6. Evaluate the following limit:

$$\lim_{x \to 4} \frac{x^2 - 8x + 16}{x - 4}.$$

- (A) 0 (B) 8 (C) -8
- (D) $+\infty$ (E) $-\infty$

7. If $\lim_{x\to 1} f(x) = 3$, $\lim_{x\to 1} g(x) = -2$, and $\lim_{x\to 1} h(x) = 4$, evaluate the limit

$$\lim_{x \to 1} \left(\frac{2f(x)}{g(x)} + \sqrt{h(x)} \right).$$

- (A) -1 (B) 3 (C) 13
- (D) 5 (E) 7

[1]

- 8. If the function f(x) is continuous on the interval [-1,3], f(-1)=1, and f(3)=11, which numbers below are guaranteed to be values of f(x) by the Intermediate Value Theorem on the interval (-1,3)?
 - I. 3
 - II. $\sqrt{2}$
 - III. 3π
 - (A) I only (B) II only (C) III only
 - (D) I and II only (E) I, II, and III

9. Determine the value of the number k that makes the function f(x) below continuous:

$$f(x) = \begin{cases} 1 - kx & \text{if } x < 1, \\ k + x & \text{if } x \ge 1. \end{cases}$$

- (A) 0 (B) 1 (C) -3/4
- (D) 1/2 (E) 15/17

[1]

10. Consider the function

$$h(x) = \begin{cases} \frac{1}{x} & \text{if } 0 < x < 1, \\ x & \text{if } x > 1. \end{cases}$$

Which of the following are true?

- I. $\lim_{x \to 1^+} h(x)$ exists
- II. $\lim_{x \to 1^-} h(x)$ exists
- III. $\lim_{x\to 1} h(x)$ exists
- IV. h(x) is continuous at x = 1
- (A) I only (B) I and II only (C) I, II, and III only
- (D) IV only (E) I, II, III, and IV

11. Evaluate the following limit:

$$\lim_{x \to \infty} \frac{\sqrt{x^2 + 2}}{x}.$$

- $(A) + \infty$
- (B) $-\infty$
- (C) 0
- (D) 1
- (E) -1

12. The function $f(x) = \frac{x^2 + 1}{x^3 + 8}$ has which of the following?

[1]

[1]

- (A) no vertical or horizontal asymptotes
- (B) 1 vertical asymptote and 1 horizontal asymptote
- (C) 2 vertical asymptotes and 1 horizontal asymptote
- (D) 1 vertical asymptote and 2 horizontal asymptotes
- (E) 1 vertical asymptote and no horizontal asymptotes

13. For what value of the number k is the following function differentiable at x = 0?

$$f(x) = \begin{cases} -x & x \le 0\\ k & x > 0 \end{cases}$$

- $(A) -2 \qquad (B) -1 \qquad (C) 0$
- (D) 1 (E) No value of k makes this function differentiable at x = 0

- 14. If $f(x) = 3x^{10}$, then $\lim_{h\to 0} \frac{f(1+h) f(1)}{h}$ is which of the following? [1]
 - (A) f'(x) (B) f'(1)
- (C) Does not exist
- (D) 0 (E) None of the above

15. If we want to calculate the derivative f'(x) of f(x) = 3x + 4 using the limit definition of the derivative which of the following limits do we need to evaluate and to what does the limit evaluate?

(A)
$$\lim_{h\to 0} \frac{3(x+h)+4-(3x+4)}{h} = 3$$

(B)
$$\lim_{h\to 0} \frac{3(x+h)+4-(3x+4)}{h} = 0$$

(C)
$$\lim_{h\to 0} \frac{3h+4-(3x+4)}{h} = 3x+3$$

(D)
$$\lim_{h\to 0} \frac{3(x+h)+4-(3h+4)}{h} = 3$$

(E) None of the above.

16. Below is the graph of the derivative g'(x) of a function g(x).

Figure 1: Graph of g'(x).

Which of the following is a possible graph of g(x)?

(A) (B)

(C) (D)

(E) None of the above. It looks like:

- 17. If $f(x) = \sqrt{x} + \frac{1}{\sqrt{x}}$ for x > 0, then f'(4) is which of the following? [1]
 - (A) $\frac{5}{4}$ (D) $\frac{3}{4}$ (C) $\frac{3}{16}$
 - (B) $\frac{255}{32}$ (E) $\frac{257}{32}$