
Math 1131 Applications: Exponential Growth/Decay Fall 2019

The most important use of derivatives in applications of calculus is the description

of dynamically changing quantities by differential equations, which are equations

involving an unknown function and its derivatives. Examples include y′(t) = 3y(t)

and y′′(t) = y(t)2 − y(t). In applications, the variable t is usually time. People who

care about solving a differential equation are interested in both approximations to a

solution (with a computer) and qualitative features of a solution, e.g., will a solution

blow up in finite time? There is a million dollar prize for understanding the solutions

to one particular differential equation.

The scope of applications of differential equations is vast:

• physics: gravitational, nuclear, and electromagnetic forces

• engineering: vibrations of mechanical systems, heat flow, electrical circuits

• chemistry: chemical concentrations during a reaction, molecular interactions

• biology: spread of infection, metabolism, population growth

• finance: movement of stock prices, pricing insurance products

This just scratches the surface. A list of named differential equation is here.

Remark. Computer simulation software for physical systems hides the underlying

math, so the following remark taken from here is worth keeping in mind: “Perhaps

the reason why some engineers and engineering students feel differential equations are

not used by engineers is that they are working with simulating and modeling software

[. . .] and don’t see the actual mathematical model behind them.”

The most basic widely applicable differential equation is y′(t) = ky(t) for a con-

stant k, and its general solution is

y(t) = Cekt

where C = y(0) (the initial amount of y). The numbers C and k are constants, with

C usually positive. If k > 0 these solutions describe exponential growth, and if k < 0

these solutions describe exponential decay. See the graphs below.
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Examples of exponential growth include

• the size of a population with no predators or other factors restricting its size1,

• the amount of money in an account subject to compound interest, particularly

continuously compounded interest,

• a nuclear chain reaction.

Examples of exponential decay are

• the concentration of a drug in the blood after it is no longer being administered,

• atmospheric pressure as a function of height above sea level,

• the amount of remaining radioactive atoms in a pile.

A controlled use of exponential growth is how nuclear power plants work and is

one reason nuclear bombs are hard to construct. This involves the proper handling of

prompt and delayed neutrons. Improper handling is one cause of accidents at nuclear

power plants.

Two Nobel prizes have been awarded to research involving physical quantities

fitting the differential equation y′(t) = ky(t):

1. 1960 Nobel in Chemistry to Libby for his creation of radiocarbon dating. This

is a method of determining the age of old organic material such as prehistoric

cave paintings and parchment manuscripts by measuring its carbon isotopes,

one of which is subject to radioactive (exponential) decay.

1When there are predators, the population size both grows and decays. A basic model for this is
the Lotka–Volterra equations.
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2. 1979 Nobel in Physiology or Medicine to Cormack and Hounsfield for their

independent work on CT scanning. Cormack’s mathematical work used the

Beer–Lambert law, which comes from solving a differential equation that has

y′(t) = ky(t) as a special case.

One of the important parameters for a substance undergoing exponential decay

is its half-life: the time needed for an amount of the substance to decay to half its

value. For example, Gold-238 has a half-life of 2.7 days while Carbon-14 has a half-

life of around 5730 years. To describe half-life from an exponential decay formula

y(t) = Cekt with k < 0, we want the time t1/2 such that y(t1/2) = y(0)/2 = C/2:

C/2 = Cekt1/2 , so e−kt1/2 = 2 (the factor C = y(0) has canceled out). Taking natural

logarithms of both sides, −kt1/2 = ln 2, so t1/2 = (ln 2)/(−k) = (ln 2)/|k|.
Some differential equations that are not directly of the form y′(t) = ky(t) for

constant k can be solved in a similar way to that equation, such as y′(t) = k(y(t)− b)
for constants k and b. This implies (y(t)− b)′ = k(y(t)− b), so y(t)− b = Cekt for a

constant C, and thus y(t) = b+ Cekt . (Here C is not y(0), but y(0) − b.) If k < 0

then y(t) → b as t → ∞, so b is the “terminal” (limiting) value of y(t) for large t.

Think of a hot object cooling down to room temperature, a cool object warming up to

room temperature, or a falling object reaching terminal velocity. Here are examples

of this differential equation in action.

• Newton’s law of cooling for an object placed in a large room says its temperature

decays at a rate proportional to the difference between its current temperature

and the ambient (room) temperature: T ′(t) = k(T (t) − Ta), where k < 0 and

Ta is the ambient temperature. This matches the boxed differential equation

above, with b = Ta. Then T (t) = Ta +Cekt, so from k < 0 we get T (t)→ Ta as

t → ∞, which says the object’s temperature approaches room temperature, a

familiar physical result. If T (0) > Ta then we have cooling, while if T (0) < Ta

then we have warming. See the graph below. Newton’s law of cooling is a good

approximation when the object’s initial temperature T (0) is within 50◦ F of Ta.

(The validity when |T (0)− Ta| is small is like the approximation sin θ ≈ θ only

being good when θ is small in radians.)

• A model for an object moving through air subject to air drag: if air drag is

proportional to the velocity, which is a good approximation for falling mist
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particles of oil or water, then from Newton’s second law the object’s velocity

v(t) satisfies the differential equation mv′(t) = mg−Kv(t) where m is the mass,

g ≈ 9.8m/s2 and K is a positive constant depending on physical properties of

the object and air. The equation is the same as v′(t) = −(K/m)(v(t)−mg/K),

which matches the boxed differential equation above (k = −K/m and b =

mg/K), so v(t) = mg/K + Ce−(K/m)t for some C. The terminal velocity (limit

of v(t) as t→∞) is mg/K. See the graph below. This was used by Millikan in

his oil drop experiment, which was the first measurement of the electron charge

and used the terminal velocity of falling oil drops. It earned Millikan the 1923

Nobel prize in physics.
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(For a falling skydiver, drag is proportional not to the velocity but to the square

of the velocity, so mv′(t) = mg−Kv(t)2 for some positive constant K, and thus

v′(t) = −(K/m)(v(t)2 − mg/K) after some algebra. Solving this differential

equation uses methods from Math 1132, so we don’t work it out here. We’ll

just say there is a terminal velocity again: now it’s
√
mg/K instead of mg/K.)
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