
Math 1131 Applications: Small-Angle Approximation Fall 2019

That sin′(0) = cos(0) = 1 means the tangent line to the graph of y = sinx at

x = 0 has slope 1: the tangent line is y = x. See the picture below, where the graph

of y = sinx for x near 0 is approximated well by the graph of y = x.
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That sin x ≈ x for small x is called a small-angle approximation. It is illustrated

numerically in the table below. The angles are in radians, so .2 = .2 radians ≈ 11.4◦

(multiply by 180/π to convert from radians to degrees).

x .2 .1 .023 .00452 .00059 .000328

sinx .198669 .099833 .022997 .004519 .000589 .0003279

Continuity of sinx at x = 0 tells us sin x → sin 0 = 0 as x → 0. The small-angle

approximation for sinx, which is based on differentiability, is an improvement on what

we learn from continuity: the small-angle approximation tells us how sinx tends to

0 as x → 0: in a linear (first-power) way. Being able to replace the complicated

function sinx with the function x, when x is small, is a convenient approximation in

applications.

Application 1. Small oscillations of a pendulum.

If we set a small pendulum in motion, it oscillates back and forth as shown below.
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If the pendulum is released with velocity 0, its displacement angle θ = θ(t) from a

vertical position varies with time, and an equation describing θ(t) turns out to be

(using Newton’s second law and ignoring friction and air drag)

θ′′(t) +
g

L
sin θ(t) = 0 with θ′(0) = 0,

where L is the length of the pendulum and g ≈ 9.8 m/s2 is the acceleration due to

gravity near the surface of the earth. The above equation is analytically hard to solve

for θ(t), but when θ(t) is small (in radians, so 10◦ ≈ .174 radians is small) we can

approximate the term sin θ(t) by θ(t), which leads to the equation

θ′′(t) +
g

L
θ(t) = 0 with θ′(0) = 0,

and this can be solved: θ(t) = θ(0) cos(
√
g/Lt) , where θ(0) is the initial (release)

angle for the pendulum at time t = 0. (Note θ′(t) = −θ(0) sin(
√
g/Lt)

√
g/L, so

θ′(0) = 0, which corresponds to the initial release velocity being 0.) Here are two

interesting observations about the formula for θ(t):

1. Since cosx has values in [−1, 1], the displacement angle θ(0) cos(
√
g/Lt) has

values in [−θ(0), θ(0)]: this means the pendulum returns to its original release

angle but not a higher one. See this with a bowling ball pendulum here.

2. The period T of θ(0) cos(
√
g/Lt) as t varies is1 2π

√
L/g, which is independent

of the release angle θ(0). So the period of a pendulum with different small

release angles have the same period T . See this shown for a few different angles

here. That T does not depend on θ(0) when θ(0) is small is the basis for

pendulum clocks, which were the primary timekeeping mechanism for over 250

years. If θ(0) is not small, T does depend on it: such formulas are here, which

are expansions in infinite series (a topic in Math 1132) having 2π
√
L/g as the

first term.

Application 2. Measuring the distance to stars.

The approximation sin θ ≈ θ for small θ is the basis for the parallax method of

estimating the distance between the Earth and other stars (except the Sun). See the

diagram below.

1For A > 0 and c > 0, the period of A cos(cθ) is 2π/c.
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https://www.youtube.com/watch?v=i2GdY1OlDpA
https://www.youtube.com/watch?v=6eAtN4N43-M&t=1m38s
https://en.wikipedia.org/wiki/Pendulum_(mathematics)#Legendre_polynomial_solution_for_the_elliptic_integral
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Stars except the Sun are so far away that they largely don’t appear to move at all

relative to each other. This is why ancient constellations look largely the same today

and why ancient astronomers referred to a background of “fixed stars” against which

the planets move (the word “planet” is from the Greek term for wanderer). For some

stars, it was possible by the 1800s to detect a small apparent motion relative to the

background of “fixed” stars when observed at different times: the apparent positions

of the same star 6 months apart (meaning the Earth is on opposite sides of the Sun)

sweeps out a very small angle. An analogy you can check in your room is viewing

your finger in front of you with just one eye and then just the other eye; your finger

has not physically moved, but it will appear to have moved against the background

wall (or window, etc.).

Let 2θ be the angle a star appears to sweep out over 6 months (this angle is called

the parallax of the star). Since this angle is so small, the triangle connecting the star

to the positions of the Earth 6 months apart has two sides of essentially equal length

d, so we treat the triangle as isoceles where the two equal angles ϕ are nearly 90◦.

Using the Law of sines, sin(2θ)/(2L) = sin(ϕ)/d ≈ 1/d. Since 2θ is very small we can

say sin(2θ) ≈ 2θ, so
2θ

2L
≈ 1

d
=⇒ d ≈ L

θ
.

This is how the distance d to the star is measured.

Application 3. Pilot navigation

If a pilot intends to fly along a certain straight line route but is off from that

direction by a small angle θ, the “1 in 60” rule says that each 1◦ error in direction

leads to a 1 mile error from the planned flight path (1 mile “off track”) for every 60

miles flown. We’ll explain this with the diagram below.

A
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θ r sin θ

If you want to fly from A due east but travel instead at a small nonzero angle
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https://en.wikipedia.org/wiki/Law_of_sines


θ from an eastern direction, then after traveling r miles the (straight line) distance

the plane is from the intended direction is r sin θ, which for small θ (in radians!) is

around rθ. Since 1◦ = π/180 radians, and π/180 ≈ 3/180 = 1/60, we obtain for

r = 60 miles and θ = 1◦ that rθ = 60θ ≈ 1 mile. (The actual distance “off track” is

60 sin(π/180) ≈ 1.047 miles.) Some examples aimed at an audience of pilots is here.
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https://www.youtube.com/watch?v=WiXU2OrDeNo

