Math 1131 Week 10 Worksheet

Name: _____

Discussion Section:

Solutions should show all of your work, not just a single final answer.

4.7: Optimization Problems

1. A closed box (top, bottom, and all four sides) needs to be constructed to have a volume of 9 m^3 and a base whose width is twice its length. See Figure 1.

Figure 1: A box

Use calculus to determine the dimensions (length, width, height) of such a box that uses the least amount of material. Justify why your answer corresponds to a minimum, not a maximum. 2. We want to find the points on $y = x^2$ that are closest to (0,3).

Figure 2: Distance to (0,3) on $y = x^2$.

(a) For each point (x, x^2) on the parabola, find a formula for its distance to (0, 3). Call this distance D(x). (See Figure 2.)

(b) Let $f(x) = D(x)^2$, which is the squared distance between (x, x^2) and (0, 3). Finding where D(x) is minimal is the same as finding where f(x) is minimal. Determine all x where f(x) has an absolute minimum. The points (x, x^2) for such x are the closest points to (0, 3) on $y = x^2$.

3. Three line segments of length 1 are joined together at endpoints to form a base and the legs of an isosceles trapezoid, as in Figure 3. Let θ in $(0, \pi/2)$ be the common angle measurement between the legs and the line passing through the base of length 1. We want to find the angle θ that maximizes the area of the trapezoid.

Figure 3: An isosceles trapezoid with base and legs of length 1.

(a) Compute the area $A(\theta)$ of the trapezoid. The general area formula for a trapezoid is $\frac{1}{2}h(b_1 + b_2)$, where h is the height and b_1 and b_2 are the lengths of the bases. (Hint: Break up the trapezoid into a rectangle with two right triangles at both ends. Use trigonometry to compute the height and the length of the longer base in terms of θ .)

(b) Find all solutions to $A'(\theta) = 0$ with $0 < \theta < \pi/2$. (The answer is not $\pi/4 = 45^{\circ}$.)

(c) Verify that the area $A(\theta)$ is a maximum, not a minimum, at the angle found in part (b) and compute this maximum area.

4.9: Antiderivatives

4. Find the most general antiderivative of the function (use C as any constant).

(a)
$$f(x) = \frac{1}{2} + \frac{3}{4}x^2 - \frac{4}{5}x^3$$

(b)
$$f(x) = \frac{10}{x^9}$$
 for $x > 0$

(c)
$$f(x) = \frac{x^4 + 3\sqrt{x}}{x^2}$$
 for $x > 0$

(d)
$$f(x) = \cos x - 5\sin x + e^x$$

(e)
$$f(x) = e^2$$

(f)
$$f(x) = 7x^{2/5} + 8x^{-4/5}$$
 for $x > 0$

5. Find a function f(x) satisfying the given conditions.

(a) $f'''(x) = \cos x$, f(0) = 1, f'(0) = 2, and f''(0) = 3

(b) f''(x) = 2 - 12x, f(0) = 9, f(2) = 7

- 6. A particle moves along a line according to the following information about its position s(t), velocity v(t), and acceleration a(t). Find the particle's position function s(t) for general t.
 - (a) $v(t) = 1.5t^2 + 4t, s(4) = 50$

(b) $a(t) = 3\cos t - 2\sin t, \ s(0) = 0, \ v(0) = 4$

7. T/F (with justification) The antiderivative of $\cos(x^2)$ is $\sin(x^2) + C$.