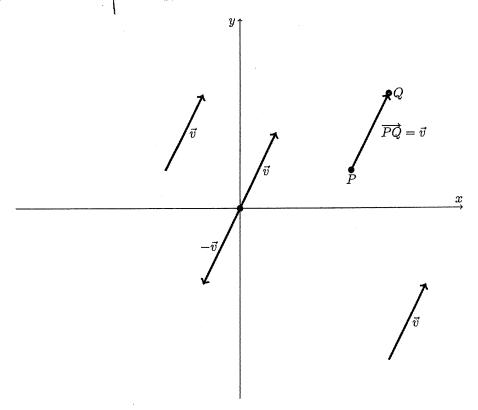
§ 12.2 Vectors

What is a vector?

A vector is an object with both Magnitude and direction, whereas a scalar has only Magnitude.

Some examples of a scalar quantity are speed, energy, voltage, and distance, but we would use a vector to describe quantities like velocity, force, torque, and displacement, for example.

A vector \vec{v} is the same no matter where it starts and ends, so long as the magnitude and direction are equal. We typically call a vector a $\frac{\sqrt{0.51+0.00}}{\sqrt{0.51+0.000}}$ $\frac{\sqrt{0.51+0.000}}{\sqrt{0.51+0.0000}}$ if it starts at the origin.



We often write a vector with an arrow over a letter to distinguish a vector \vec{v} from a scalar v, but we also can talk about the vector between two points P and Q, denoted \overrightarrow{PQ} .

We may refer to a vector \vec{v} by its $\underline{(\) \) \ (\)$

We can think of a point (x, y, z) as the position vector $\langle x, y, z \rangle$, which connects the origin to the point (x, y, z). This will be helpful in future applications of vectors.

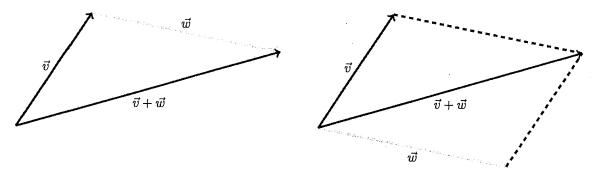
The Flyo Vector is a special vector has no magnitude and points in every direction, denoted by

$$\vec{0} = \langle 0, 0, 0 \rangle.$$

Note that for any vector \vec{v} , we have $\vec{v} + \vec{0} = \vec{0} + \vec{v} = \vec{v}$.

Addition of Vectors

We can add any two vectors either graphically or using their components. The following picture shows the two main methods for adding vectors graphically: the Tip-to-Tail Method and the Parallelogram Method:

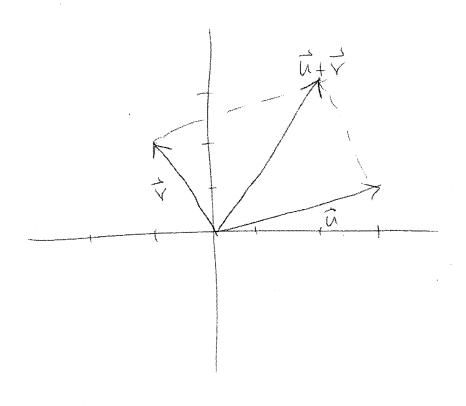


We can also add two vectors using their component form. Say $\vec{a}=\langle a_1,a_2,a_3\rangle$ and $\vec{b}=\langle b_1,b_2,b_3\rangle$. Then

$$\vec{a} + \vec{b} = \langle a_1, a_2, a_3 \rangle + \langle b_1, b_2, b_3 \rangle = \langle a_1 + b_1, a_2 + b_2, a_3 + b_3 \rangle$$

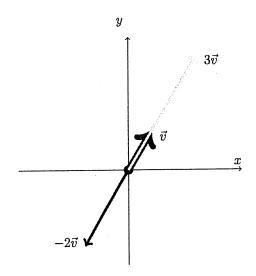
For example, $\langle 1, -2, 1 \rangle + \langle 2, 0, 5 \rangle = \langle 3, -2, 6 \rangle$.

Example 1: Find the sum of the vectors $\vec{u} = \langle 3, 1 \rangle$ and $\vec{v} = \langle -1, 2 \rangle$ both graphically and by adding the components.



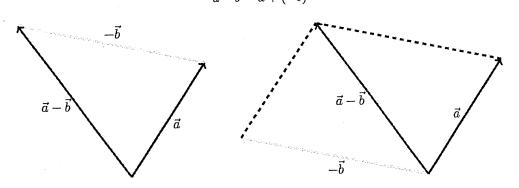
Scalar Multiplication

We can multiply a vector $\vec{v} = \langle x, y, z \rangle$ by any scalar c by $c\vec{v} = \langle cx, cy, cz \rangle$. If c > 0, the vector $c\vec{v}$ will point in the same direction as \vec{v} , but it will point in the opposite direction of \vec{v} if c < 0.



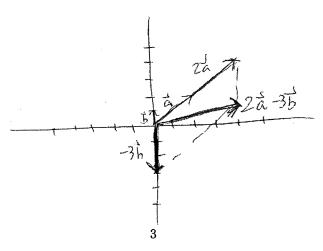
Subtraction of Vectors

Now that we have defined addition and scalar multiplication of vectors, we can define subtraction. We define subtraction via $\vec{a}-\vec{b}=\vec{a}+(-\vec{b})$



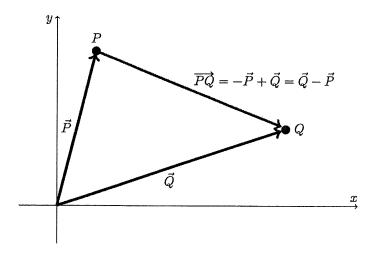
Example 2: If $\vec{a} = \langle 2, 2 \rangle$ and $\vec{b} = \langle 0, 1 \rangle$, find $2\vec{a} - 3\vec{b}$. Sketch this sum graphically as well.

$$2\vec{a} - 3\vec{b} = 2\langle 2, 2 \rangle - 3\langle 0, 1 \rangle = \langle 4, 47 - \langle 0, 3 \rangle = \langle 4, 1 \rangle$$



Vectors Between Points

Given two points P and Q, we often want to find the vector from P to Q, denoted \overrightarrow{PQ} .



If we know the components of the points involved, then we can compute the components of the vector \overrightarrow{PQ} . For example, if we want the vector from P(1,3,-1) to Q(-2,0,3), then we compute

$$\overrightarrow{PQ} = \overrightarrow{Q} - \overrightarrow{P} = \langle -2 - 1, 0 - 3, 3 - (-1) \rangle = \langle -3, -3, 4 \rangle.$$

Example 3: Find the vector that starts at the point P(0,3,-5) and ends at Q(-2,-1,3).

Magnitude of a Vector

For a vector \vec{v} , we denote its magnitude (length) by $|\vec{v}|$. If $\vec{v} = \langle x, y, z \rangle$, then

$$|\vec{v}| = \sqrt{x^2 + y^2 + z^2},$$

which is the distance from the origin to the point (x, y, z).

Example 4: Find the lengths of the vectors $\vec{a} = \langle 1, 4, -2 \rangle$, $\vec{b} = \langle 2, -3, -1 \rangle$, and $\vec{a} + \vec{b}$.

We say that a vector \vec{u} is a $\underline{\text{Uni}} + \underline{\text{Vector}}$ if it has length 1, that is, $|\vec{u}| = 1$. For any vector \vec{v} , we can always find a unit vector in the same direction by taking

$$\vec{u} = \frac{\vec{v}}{|\vec{v}|}.$$

Unit vectors are important in many applications. Note that if $\vec{u} = \langle x, y \rangle$ is a unit vector, then the point (x, y) lies on the unit circle $x^2 + y^2 = 1$.

Example 5: Given the vector $\vec{v} = \langle 1, -3, 4 \rangle$, find a unit length vector with the same direction as \vec{v} and another that has the opposite direction.

$$|\vec{V}| = \sqrt{1+9+16} = \sqrt{26}$$
, so $\vec{U} = \frac{\vec{V}}{|\vec{V}|} = \frac{1}{\sqrt{26}} \langle 1, -3, 4 \rangle = \langle \frac{1}{\sqrt{26}}, \frac{-3}{\sqrt{26}}, \frac{4}{\sqrt{26}} \rangle$

Another unit vector in the apposite direction is $-\vec{U} = \frac{1}{\sqrt{26}} \langle 1, -3, 4 \rangle = \langle \frac{1}{\sqrt{26}}, \frac{3}{\sqrt{26}}, \frac{-4}{\sqrt{26}} \rangle$