Absolute Extrema Practice Exercises Solutions

- 1. $f_x = -2x = 0 \Rightarrow x = 0$
 - $f_y = 2y = 0 \Rightarrow y = 0$

(0,0) is a critical point inside the given region

Constraint is $g(x,y) = x^2 + 4y^2 = 4$. Lagrange multipliers: $\vec{\nabla}f = \lambda \vec{\nabla}g$.

$$\begin{array}{rcl} -2x &=& \lambda 2x\\ 2y &=& \lambda 8y\\ x^2 + 4y^2 &=& 4 \end{array}$$

If $x \neq 0$ an $y \neq 0$, then $\lambda = -1$ and $\lambda = \frac{1}{4}$, impossible, so must have x = 0 or y = 0.

If x = 0 and $x^2 + 4y^2 = 4$, then $y = \pm 1$, so (0, 1) and (0, -1) are possible points. If y = 0 and $x^2 + 4y^2 = 4$, then $x = \pm 2$, so (2, 0) and (-2, 0) are possible points.

f(0,0) = 0 f(0,1) = 1 (absolute maximum value) f(0,-1) = 1 (absolute maximum value) f(2,0) = -4 (absolute minimum value)f(-2,0) = -4 (absolute minimum value)

2. Area = A(x, y) = xy

The only critical point is (0,0), but it doesn't make sense in the context of the problem, so it can be ignored.

Constraint is perimeter P(x, y) = 2x + 2y = 14. Lagrange multipliers: $\vec{\nabla}A = \lambda \vec{\nabla}P$.

$$y = 2\lambda$$
$$x = 2\lambda$$
$$2x + 2y = 14$$

We have $x = 2\lambda = y$ so x + x = 7 and $x = \frac{7}{2}$, so $y = \frac{7}{2}$. $A(\frac{7}{2}, \frac{7}{2}) = \frac{49}{4}$

Pick any other point (x, y) satisfying the constraint, for example (1, 6): $A(1, 6) = 6 < \frac{49}{4}$. Thus, $\frac{49}{4}$ is the maximum value. There is no minimum value if $x \neq 0$ and $y \neq 0$.