MATH 2110Q Exam 1: Things to Know

$\left|\left\langle a_{1}, a_{2}, a_{3}\right\rangle\right|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}$
The unit vector in the same direction as \vec{a} is $\frac{\vec{a}}{|\vec{a}|}$
$\left\langle a_{1}, a_{2}, a_{3}\right\rangle \cdot\left\langle b_{1}, b_{2}, b_{3}\right\rangle=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$
$\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$
$\vec{a} \cdot \vec{b}=0 \Rightarrow$ the vectors are orthogonal (perpendicular)
$\vec{a}=\lambda \vec{b}$ (λ is a constant $) \Rightarrow$ the vectors are parallel

$$
\begin{aligned}
\left\langle a_{1}, a_{2}, a_{3}\right\rangle \times\left\langle b_{1}, b_{2}, b_{3}\right\rangle & =\left\langle a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right\rangle \\
& =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
\end{aligned}
$$

$\vec{a} \times \vec{b}$ is orthogonal to both \vec{a} and \vec{b}
For graphing in \mathbb{R}^{3}, if an equation has an absent variable, the surface extends parallel to the axis of the absent variable. For example, $z=x^{2}$ (below) extends parallel to the y-axis.

We can study and identify quadric surfaces (cones, paraboloids, ellipsoids, hyperbolic paraboloids, hyperboloids) via their traces - cross-sections obtained by fixing one variable.

We should be able to recognize and sketch the following types of traces: parabolas, ellipses, hyperbolas, lines, points.

The line containing $\left(x_{0}, y_{0}, z_{0}\right)$ with direction vector $\langle a, b, c\rangle$:
vector equation $\vec{r}(t)=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\langle a, b, c\rangle$
parametric equations $x=x_{0}+a t, y=y_{0}+b t, z=z_{0}+c t$
The plane containing $\left(x_{0}, y_{0}, z_{0}\right)$ with normal vector $\langle a, b, c\rangle$ has equation

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

The tangent plane approximation (linearization) of $f(x, y)$ at (a, b) is

$$
z=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)+f(a, b)
$$

The gradient of $f(x, y)$ is $\vec{\nabla} f(x, y)=\left\langle f_{x}, f_{y}\right\rangle$

The directional derivative of f in the direction of the unit vector \vec{u} is
$D_{\vec{u}} f=\vec{\nabla} f \cdot \vec{u}$
At any point, the maximum derivative of f occurs in the direction $\vec{\nabla} f$, and the value of the maximum derivative is $|\vec{\nabla} f|$

A critical point for $f(x, y)$ is a point that satisfies the system of equations
$f_{x}=0$
$f_{y}=0$
$D=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}$. Second Derivative Test on a critical point (a, b) :
If $D(a, b)>0$ and $f_{x x}>0$, it's a local minimum
If $D(a, b)>0$ and $f_{x x}<0$, it's a local maximum
If $D(a, b)<0$, it's a saddle point
If $D=0$, test is inconclusive
A region in the $x y$-plane is type x if the arrows across the region in the direction of the x-axis all start on a single curve and all end on a single curve.

A region in the $x y$-plane is type y if the arrows across the region in the direction of the y-axis all start on a single curve and all end on a single curve.

To set up a Cartesian double integral (or switch the order of a double integral), sketch the region being integrated over in the $x y$-plane decide what variable to integrate with respect to first for $d y(d x)$ inside, find equations for the bottom (left) and top (right) bounding curves outer bounds are should be constant

To convert between polar and Cartesian coordinates:

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& x^{2}+y^{2}=r^{2}
\end{aligned}
$$

In polar coordinates, $d A=r d r d \theta$

