Name:			
1.01110.			

Understanding Surfaces

- 1. (a) Consider the sphere $x^2 + y^2 + z^2 = 8$, and the half cone $z = \sqrt{x^2 + y^2}$ (the full cone is $z^2 = x^2 + y^2$, and the other half is $z = -\sqrt{x^2 + y^2}$). Find the intersection of these two surfaces—what kind of curve is it? can we say how large it is?
 - (b) Find the equation of a sphere whose intersection with the half cone $z = \sqrt{x^2 + y^2}$ is a single point.
 - (c) Find the equation of a sphere that does not intersect the half cone $z = \sqrt{x^2 + y^2}$.
- 2. For each of the following, describe all possible intersections of the given surfaces. If it is possible for the surfaces to not intersect, be sure to mention this as well.
 - (a) Two planes

Score: ______ /20

- (b) A plane and a circular cylinder
- (c) A plane and a sphere
- (d) Two spheres
- (e) An elliptic paraboloid and a plane
- (f) A (true) cone and a plane
- 3. What is the difference between $x^2 + y^2 = 9$ and $x^2 + y^2 \le 9$? What do they look like? Do they both have surface area? volume?
- 4. Sketch the region in \mathbb{R}^3 given by $1 \leq x^2 + y^2 \leq 4$, $z \leq 0$.
- 5. Assume that gravity acts in the direction of the negative z-axis. If we poured water from high above the xy-plane, which of the surfaces $z=x^2$, $z=y^2$, $x=y^2$, and $y=z^2$ would hold the water? Why or why not?