Review for Final Exam

Questions 1-10 are true/false. Explain your reasoning in either case, and make corrections to make the statement true if it is false.

- 1. For any two vectors \vec{u} and \vec{v} , then $\vec{u} \times \vec{v} = \vec{v} \times \vec{u}$.
- 2. The line $\vec{r}(t) = \langle 1+3t, -t, 2+2t \rangle$ is parallel to the plane x+y-z=4.
- 3. For $f(x,y) = \ln(x^2y^3)$, $f_{xy} = f_{yx} = 0$.
- 4. If f(x,y) is differentiable and $\vec{\nabla} f(a,b) = \vec{0}$, then (a,b) is a local maximum, local minimum, or saddle.
- 5.

$$\int_{0}^{1} \int_{-1}^{1} \int_{xy}^{x+y} f(x, y, z) dz dy dx = \int_{-1}^{1} \int_{0}^{1} \int_{xy}^{x+y} f(x, y, z) dz dx dy$$

- 6. The surface $z = r^2$ is a cone in cylindrical coordinates.
- 7. The iterated integral

$$\int_0^{\pi/2} \int_0^{\pi/2} \int_0^2 \rho sin^2 \phi \; d\rho \; d\theta \; d\phi$$

represents the volume of the portion of the sphere of radius 2 in the first octant.

8. If $\vec{F} = \vec{\nabla} f$ for some function f, then for any curve C we have

$$\int_C \vec{F} \cdot d\vec{r} = 0.$$

9. If -C denotes the curve C traced with opposite orientation, then

$$\int_{-C} f(x,y) \ ds = \int_{C} f(x,y) \ ds.$$

10. If \vec{F} is a conservative vector field and S is a surface with closed boundary curve C, then

$$\iint_{S} \operatorname{curl} \vec{F} \cdot d\vec{S} = 0.$$

- 11. Find an equation of the line through the point (3, -2, 8) that is orthogonal to the plane z = x + y.
- 12. Determine and describe the intersection of the surfaces $x^2 + y^2 + z^2 = 4$ and $x^2 + y^2 = 1$.
- 13. Let $f(x,y) = \sqrt{9 x^2 y^2}$.
 - (a) Sketch the domain of f.
 - (b) Describe the traces of f.
 - (c) Sketch the graph of f. What type of surface is this?
- 14. Marine biologists have determined that when a shark detects blood in the water, it will swim in the direction in which the concentration of blood increases the fastest. If the concentration at any point is approximated by $C(x,y) = e^{\cdot 1(x^2+2y^2)}$, in which direction will the shark move at the point (1,1)?
- 15. Find an equation of the tangent plane to the surface $z = x \sin(x+y)$ at the point (-1,1,0).
- 16. Find and classify all critical points for the function $f(x,y) = x^4 + y^4 4xy + 1$.

17. Evaluate the iterated integral

$$\int_0^1 \int_{x^2}^1 x^3 \sin(y^3) \ dy \ dx.$$

18. Let R be the region in the first quadrant enclosed by $x^2 + y^2 = 4$, x = 0, and y = x. Evaluate the double integral

$$\iint\limits_R 3xy\ dA.$$

19. Let E be the region contained between $x^2 + y^2 + z^2 = 8$ and $z = \sqrt{x^2 + y^2}$. Set up but do NOT evaluate the following integral in Cartesian, cylindrical, and spherical coordinates:

$$\iiint\limits_E xz\ dV.$$

- 20. If a particle's position is given by the curve $\vec{s}(t) = \langle \sqrt{5}t, e^t, e^{-t} \rangle$, find the velocity and acceleration at t = 0.
- 21. Find an equation of the tangent line at the point (0, -2, 1/2) for the curve $\vec{r}(t) = \left\langle t \ln t, -\sqrt{3t+1}, \frac{e^{t-1}}{1+t^2} \right\rangle$.
- 22. Find the length of the curve C given by $\vec{r}(t) = \langle 2t^{3/2}, \cos 2t, \sin 2t \rangle$, $0 \le t \le 1/3$.
- 23. Which of the following integrals makes sense? Explain why or why not.

$$\int_{C} \vec{F} \cdot d\vec{r} \qquad \qquad \int_{C} \operatorname{curl} \vec{F} \ ds \qquad \qquad \int_{C} \vec{\nabla} \cdot \vec{F} \ ds \qquad \qquad \int_{C} \operatorname{div} \vec{F} \cdot d\vec{r} \qquad \qquad \int_{C} \vec{\nabla} \cdot (\vec{\nabla} \times \vec{F}) \ ds$$

- 24. Assuming $\vec{F} = \langle x, y, z \rangle$ and C is the unit circle $x^2 + y^2 = 1$, z = 0, traversed counterclockwise, compute any integral that made sense in the previous question.
- 25. Let $\vec{F}(x, y, z) = \langle 2xy^2, z^3 + 2x^2y, 3yz^2 \rangle$.
 - (a) Find $\operatorname{curl} \vec{F}$.
 - (b) Find $\operatorname{div} \vec{F}$.
 - (c) Is \vec{F} conservative? Explain your answer.
 - (d) Can you find a function f(x, y, z) so that $\nabla f = \vec{F}$? Explain your answer.
 - (e) Evaluate $\int_C \vec{F} \cdot d\vec{r}$ if C is given by

$$\vec{r}(t) = \left\langle t^2 e^{\cos(\pi t/4)}, t e^{t-2} \cos\left(\frac{\pi}{2}t\right), e^{t-2} \sin\left(\frac{\pi}{2}t\right) \right\rangle, \ 0 \leqslant t \leqslant 2.$$

26. If C is the line segment from (0,0,0) to (1,2,3), evaluate

$$\int_C ze^y \ ds.$$

- 27. Determine an example of a non-constant vector field \vec{F} that has both $\text{curl} \vec{F} = \vec{0}$ AND $\text{div} \vec{F} = 0$.
- 28. Compute $\iint_S \operatorname{curl} \vec{F} \cdot d\vec{S}$ if $\vec{F} = \langle z, y, x \rangle$ and S is given by $x^2 + y^2 = 1$, $0 \le z \le 4$ and $x^2 + y^2 \le 1$, z = 4.

2

29. Compute $\iint_S \operatorname{curl} \vec{F} \cdot d\vec{S}$ if $\vec{F} = \langle x^2 - y^2 z, xy^3 + z, z^3 - (x^2 + y^2) \rangle$ if S is the surface given by $z^2 = x^2 + y^2$, $0 \le z \le 3$ and $x^2 + y^2 \le 9$, z = 3.

Hint: Think about what the surface looks like. Which theorem(s) could be applied?

30. If $\vec{F}(x,y,z)=\langle x+z,y+z,z\rangle$ and S is the surface given by $x^2+y^2+z^2=1$ with $z\geqslant 0$ with upward orientation, compute BOTH of the surface integrals

$$\iint\limits_{S} \vec{F} \cdot d\vec{S} \quad \text{ and } \quad \iint\limits_{S} \operatorname{curl} \vec{F} \cdot d\vec{S}.$$

Fundamental Theorem of Calculus

$$\int_a^b F'(x) \, dx = F(b) - F(a)$$

Fundamental Theorem for Line Integrals

$$\int_{C} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$

Green's Theorem

$$\iint\limits_{\Omega} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = \int_{C} P \, dx + Q \, dy$$

Stokes' Theorem

$$\iint_{C} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \int_{C} \mathbf{F} \cdot d\mathbf{r}$$

Divergence Theorem

$$\iiint\limits_{E} \operatorname{div} \mathbf{F} \, dV = \iint\limits_{S} \mathbf{F} \cdot d\mathbf{S}$$

Math 2110Q: Helpful Formulas

1. The Second Derivative Test

Let (a,b) be a critical point of a function f(x,y) with $D(x,y) = f_{xx}f_{yy} - f_{xy}^2$.

- 1. If D(a,b) > 0, then (a,b) is either a local maximum or minimum
 - (a) $f_{xx}(a,b) < 0 \Rightarrow (a,b)$ is a local maximum
 - (b) $f_{xx}(a,b) > 0 \Rightarrow (a,b)$ is a local minimum
- 2. $D(a,b) < 0 \Rightarrow (a,b)$ is a saddle
- 3. $D(a,b) = 0 \Rightarrow$ the test is inconclusive

2. Summary of Line Integrals and Surface Integrals

LINE INTEGRALS	SURFACE INTEGRALS
$C: \vec{r}(t), \ a \leqslant t \leqslant b$	$S: \vec{r}(u,v), \ (u,v) \in D$
$ds = \vec{r}'(t) dt = $ arc length differential	$dS = \vec{r}_u \times \vec{r}_v dA = \text{surface area differential}$
$\int_C f(x, y, z) ds = \int_a^b f(\vec{r}(t)) \vec{r}'(t) dt$	$\iiint_{S} f(x, y, z) dS = \iint_{D} f(\vec{r}(u, v)) \vec{r}_{u} \times \vec{r}_{v} dA$
(independent of orientation of C)	(independent of orientation of S)
$d\vec{r} = \vec{r}'(t) dt$	$d\vec{S} = (\vec{r}_u \times \vec{r}_v) \ dA$
$\int_{C} \vec{F} \cdot d\vec{r} = \int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$	$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{D} \vec{F}(\vec{r}(u,v)) \cdot (\vec{r}_{u} \times \vec{r}_{v}) dA$
(depends on orientation of C)	(depends on orientation of S)
Theorems that may apply:	Theorems that may apply:
Fundamental Theorem for Line Integrals Green's Theorem	Stokes' Theorem Divergence Theorem