Review for Final Exam

Questions 1-10 are true/false. Explain your reasoning in either case, and make corrections to make the
statement true if it is false.
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For any two vectors ¢ and ¥, then 4 x ¥ = ¥ x .
The line 7#(t) = {1 + 3t,—t,2 + 2t) is parallel to the plane  +y — z = 4.

For f(x,y) = ln(aj2y3), fa:y = fyz =0.

I f(z,y) is differentiable and V f(a,b) = 0, then (a,b) is a local maximum, local minimum, or saddle.
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2 is a cone in cylindrical coordinates.

The surface z = r
The iterated integral

/2 pm/2 2
J psin?¢ dp df d¢
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o Jo
represents the volume of the portion of the sphere of radius 2 in the first octant.

IfF =V f for some function f, then for any curve C' we have

JﬁdF:O.
C

If —C denotes the curve C traced with opposite orientation, then

f_c f(z,y) ds - L f(z.y) ds.

If F is a conservative vector field and S is a surface with closed boundary curve C, then

ff curlF - dS = 0.
S

Find an equation of the line through the point (3, —2,8) that is orthogonal to the plane z = x + y.
Determine and describe the intersection of the surfaces 22 + y2 + 22 =4 and 22 + 2 = 1.
Let f(z,y) = /9 — 22 — y2.

(a) Sketch the domain of f.

(b) Describe the traces of f.
(¢) Sketch the graph of f. What type of surface is this?

Marine biologists have determined that when a shark detects blood in the water, it will swim in the
direction in which the concentra2t10n2of blood increases the fastest. If the concentration at any point is
approximated by C(z,y) = e!(*+2¥") in which direction will the shark move at the point (1,1)?

Find an equation of the tangent plane to the surface z = zsin(x + y) at the point (—1,1,0).

Find and classify all critical points for the function f(z,y) = z* + y* — 42y + 1.



17. Evaluate the iterated integral

11
J f 23 sin(y®) dy da.
0 Jz2

18. Let R be the region in the first quadrant enclosed by 22 +y? = 4, z = 0, and y = x. Evaluate the double

integral
ff 3zy dA.
R

19. Let E be the region contained between 22 +y* + 2% = 8 and z = 4/22 + y2. Set up but do NOT evaluate
the following integral in Cartesian, cylindrical, and spherical coordinates:

Lﬂmdv.

20. If a particle’s position is given by the curve 5(t) = (v/5t,ef,e™*), find the velocity and acceleration at
t=0.

t—1
21. Find an equation of the tangent line at the point (0, —2,1/2) for the curve 7(¢t) = <t Int,—+/3t + 1, ii—t2>

22. Find the length of the curve C' given by 7(t) = (2t%/2 cos 2t,sin 2t), 0 < t < 1/3.
23. Which of the following integrals makes sense? Explain why or why not.
fﬁ.df fcuﬂﬁds Jﬁ-ﬁds fdivﬁ-df fﬁ-(ﬁxﬁ)ds
c c c c c

24. Assuming F = (w,y,z) and C is the unit circle 22 + y? = 1, 2z = 0, traversed counterclockwise, compute

any integral that made sense in the previous question.
25. Let F(z,y,2) = (2xy?, 23 + 222y, 3y22).

(a) Find curlF.

(b) Find divF.

¢) Is F conservative? Explain your answer.

)

(c)

(d) Can you find a function f(z,y, z) so that Vf = F? Explain your answer.
)

(e) Evaluate f F . dr if C is given by
c

7(t) = <t26C°S(”t/4),tet_2 cos (gt) ,e!™2sin (gt)>, 0<t<2.

26. If C is the line segment from (0,0, 0) to (1,2, 3), evaluate

f ze¥ ds.
c

27. Determine an example of a non-constant vector field F that has both curlF = 0§ AND divF = 0.

28. Compute ffcurlﬁ dSif F = (z,y,ryand Sisgiven by 22 +3?> =1, 0 <z <4and 2 +¢y> < 1, 2 = 4.
s



29. Compute JJ- curlF - dS if F = (@ —y?z,2y® + 2,2° — (2 + y?)) if S is the surface given by 22 =
S
224+ 9y%, 0<z<3and 2> +94%2 <9, z=3.

Hint: Think about what the surface looks like. Which theorem(s) could be applied?

30. If ﬁ(m,y, 2) ={x+ 2,y + 2,2y and S is the surface given by 22 + 3% + 22 = 1 with z > 0 with upward
orientation, compute BOTH of the surface integrals

f F.ds and .“- curlF - dS.
S S

Fundamental Theorem of Calculus |'b F'(x) dx = F(b) — Fl(a)

rib)

Fundamental Theorem for Line Integrals f(_ Vf-dr = f(r(b)) — f(r(a)) /\_—/
C

r(a)

C
Green’s Theorem ” (ﬁ - d—P> dA = ‘ Pdx + Qdy
" ax ay Je
Stokes” Theorem ” curl F - dS = ;F ~dr
. :
Divergence Theorem ||| divFdV = J‘ F-dS




Math 2110Q: Helpful Formulas

1. The Second Derivative Test

Let (a,b) be a critical point of a function f(z,y) with D(z,y) = fexfyy — ij

1. If D(a,b) > 0, then (a,b) is either a local maximum or minimum
(a) fzz(a,b) <0 = (a,b) is a local maximum
(b) fzz(a,b) > 0= (a,bd) is a local minimum
2. D(a,b) < 0= (a,b) is a saddle
(

b
3. D(a,b) = 0 = the test is inconclusive

2. Summary of Line Integrals and Surface Integrals

LINE INTEGRALS SURFACE INTEGRALS

C:7(t), a<t<b S : (u,v), (u,v) €D

ds = |F'(t)| dt =arc length differential | dS = |F, X 7| dA= surface area differential

L F(,y,2) ds = j " FEO) )] de |[ #@v2) as = [ s iz < 7 aa
S D

(independent of orientation of C') (independent of orientation of S)

S D
(depends on orientation of C') (depends on orientation of S)
Theorems that may apply: Theorems that may apply:
Fundamental Theorem for Line Integrals Stokes’ Theorem

Green’s Theorem Divergence Theorem




