Math 2110Q
Practice Exam 2
Spring 2017

NAME:

Discussion Section:

Read This First!

- Read the questions and instructions carefully.
- The available points for each problem are given in brackets.
- You must show your work to obtain full credit (and to possibly receive partial credit). Correct answers with no justification will not receive credit.
- Make sure your answers are clearly indicated, and cross out any work you do not want graded.
- Do not leave any blanks! Even if you do not arrive at an answer, show as much progress towards a solution as you can, and explain your reasoning.
- Calculators are not allowed.

Grading - For Administrative Use Only

Page:	1	2	3	4	5	Total
Points:	11	11	7	8	13	50
Score:						

1. Compute the arc length of the curve given by $\vec{r}(t)=\left\langle\frac{4}{3} t^{3 / 2}, \frac{1}{2} t^{2}-2 t, \frac{4}{3} t^{3 / 2}\right\rangle$ from $t=1$ to $t=2$.
2. Compute the line integral of $\vec{F}=\left\langle y-x, x^{3}\right\rangle$ over the portion of the curve $y=x^{2}$ from $(-1,1)$ to $(1,1)$.
3. Set up but do not evaluate a triple integral in cylindrical coordinates to find the volume enclosed between the $x y$-plane and $z=2\left(x^{2}+y^{2}\right)+3$ over the region D in the second quadrant enclosed by $x^{2}+y^{2}=25$ using cylindrical coordinates.
4. Set up but do not evaluate a triple integral in Cartesian coordinates to find the volume enclosed between $y=0, z=0, y=\sqrt{x}$ and $z=1-x$.
5. Compute the line integral of $f(x, y)=4 x y$ over the line segment from $(1,-2)$ to $(3,0)$.
6. Let C be the path consisting of the line segment from $(0,0)$ to $(1,1)$, followed by the portion of the circle of radius $\sqrt{2}$ traced counterclockwise from $(1,1)$ to $(1,-1)$, followed by the line segment from $(1,-1)$ back to $(0,0)$. Sketch C, then use Green's Theorem to compute the line integral of $\vec{F}=\left\langle x^{2}-x y, e^{\cos y}\right\rangle$ over C.
7. Let $\vec{F}=\left\langle 3 x^{2}-2 x y+5, y^{3}-x^{2}\right\rangle$ be a vector field.
(a) Find a potential function f so that $\vec{F}=\vec{\nabla} f$.
(b) If C is the circle $(x-2)^{2}+(y+4)^{2}=9$ traced once clockwise, find the value of the line integral $\int_{C} \vec{F} \cdot d \vec{r}$.
8. Write the following integral using spherical coordinates if the solid E is bounded below by $z=\sqrt{x^{2}+y^{2}}$ and above by $z=1$. Do not evaluate.

$$
\iiint_{E} y^{2} z d V
$$

