MATH 2110Q

PRACTICE EXAM 2

FALL 2016

NAME: SOLUTIONS	
Discussion Section:	

Read This First!

- Read the questions and instructions carefully.
- The available points for each problem are given in brackets.
- You must **show your work** to obtain full credit (and to possibly receive partial credit). Correct answers with no justification will not receive credit.
- Make sure your answers are clearly indicated, and cross out any work you do not want graded.
- Do not leave any blanks! Even if you do not arrive at an answer, show as much progress towards a solution as you can, and explain your reasoning.
- Calculators are allowed, but models that can do symbolic computations (TI-89 and above, including TI-NSpire) are not allowed.

Grading - For Administrative Use Only

Page:	1	2	3	4	5	Total
Points:	15	10	8	7	10	50
Score:						

1. Find and classify all critical points for the function $f(x,y) = \frac{1}{2}y^2 - \frac{1}{3}x^3 - xy + 2x + 5$

$$f_{x} = -x^{2} - y + 2 = 0 \Rightarrow y = 2 - x^{2}$$
 $f_{xx} = -2x$, $f_{xy} = -1$, $f_{y} = y - x = 0 \Rightarrow y = x$ $f_{yy} = 1$

$$y = x = 2 - x^{2} \Rightarrow x^{2} + x - 2 = 0$$

$$(x + 2)(x - 1) \Rightarrow x = -2, 1$$

... critical points ove (1,1), (-2,-2)

$$f_{xx} = -2x$$
, $f_{xy} = -1$,
 $f_{yy} = 1$
 $= -2x - 1$

[7]

D(1,1) = -3<0 => (1,1) is a saddle

$$\frac{100}{100}$$

$$\frac{100}{100}$$

$$\frac{100}{100}$$

$$\frac{100}{100}$$

$$\frac{1000}{100}$$

$$\frac{1000}{$$

2. Reverse the order of integration for the iterated integral

3. Fill in the missing blanks in the following chart.

-		- 7	
1	1	NI	
1	T	U	
L			

Surface	Cartesian	Cylindrical	Spherical
Sphere	$x^2 + y^2 + z^2 = 16$	$r^2 + z^2 = 16$	e=4
Cone	Z= 1x2+y2	Z= r	$\phi=rac{\pi}{4}$
Plane	x = 3	r=3sec0	$\rho\sin\phi\cos\theta = 3$
Paraboloid	$Z=\chi^2+y^2$	$z=r^2$	* = cotocsco
Cylinder	x2+y2=1	r = 1	$ \rho = \csc \phi $

(*)
$$z=x^2+y^2 \Rightarrow \varrho \cos \varphi = \varrho^2 \sin^2 \varphi$$

 $\Rightarrow \cos \varphi = \varrho \sin^2 \varphi$
 $\Rightarrow \varrho = \frac{\cos \varphi}{\sin^2 \varphi}$
 $\Rightarrow \varrho = \cot \varphi \csc \varphi$

4. Set up a triple integral that could be used to compute the volume contained between the xyplane and the surface $z = 2(x^2 + y^2) + 3$ over the region D in the second quadrant enclosed by $x^2 + y^2 \le 25$ using

(a) Cartesian coordinates.

V= M= 1 2V

$$= \int_{-5}^{0} \int_{0}^{25-x^{2}} \int_{0}^{2(x+y^{2})+3} dx$$

(b) Cylindrical coordinates.

[4]

5. Let D be the region in the xy-plane enclosed by y = x, y = -x, and $x^2 + y^2 = 8$, assuming $x \ge 0$. Sketch the region D and use a double integral in **polar coordinates** to compute the area of D.

[7]

$$= \left(\frac{1}{2} - \frac{7}{4} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$$

$$= \frac{\pi}{2} \cdot \frac{1}{2} r^{2} \left| \frac{1}{6} \right|$$

$$= \frac{7}{2} \cdot \frac{1}{2} r^{2} \left| \frac{1}{6} \right|$$

6. Write the following integral using spherical coordinates if the region E is bounded below by $z = \sqrt{x^2 + y^2}$ and above by z = 1. Do not evaluate.

[10]

 $-\iiint_{\Xi} y^2 z dV = \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{\infty} (e^{\sin \phi \sin \theta})^2 (e^{\cos \phi}) e^{2\sin \phi} d\rho d\phi d\theta$