

University of Connecticut Department of Mathematics

Math 2110Q

PRACTICE EXAM 2

Fall 2016

NAME: _____

DISCUSSION SECTION:

Read This First!

- Read the questions and instructions carefully.
- The available points for each problem are given in brackets.
- You must **show your work** to obtain full credit (and to possibly receive partial credit). Correct answers with no justification will not receive credit.
- Make sure your answers are clearly indicated, and cross out any work you do not want graded.
- Do not leave any blanks! Even if you do not arrive at an answer, show as much progress towards a solution as you can, and explain your reasoning.
- Calculators are allowed, but models that can do symbolic computations (TI-89 and above, including TI-NSpire) are not allowed.

Page:	1	2	3	4	5	Total
Points:	15	10	8	7	10	50
Score:						

Grading - For Administrative Use Only

1. Find and classify all critical points for the function $f(x,y) = \frac{1}{2}y^2 - \frac{1}{3}x^3 - xy + 2x + 5$ [8]

2. Reverse the order of integration for the iterated integral

$$\int_0^2 \int_{x^2}^{2x} f(x,y) \, dy \, dx.$$

[7]

3. Fill in the missing blanks in the following chart.

Surface	Cartesian	Cylindrical	Spherical
Sphere	$x^2 + y^2 + z^2 = 16$		
Cone			$\phi = \frac{\pi}{4}$
	x = 3		$\rho\sin\phi\cos heta=3$
Paraboloid		$z = r^2$	
		r = 1	$ ho = \csc \phi$

[10]

- 4. Set up a triple integral that could be used to compute the volume contained between the xy-plane and the surface $z = 2(x^2 + y^2) + 3$ over the region D in the second quadrant enclosed by $x^2 + y^2 \le 25$ using
 - (a) Cartesian coordinates.

(b) Cylindrical coordinates.

[4]

5. Let D be the region in the xy-plane enclosed by y = x, y = -x, and $x^2 + y^2 = 8$, assuming $x \ge 0$. Sketch the region D and use a double integral in **polar coordinates** to compute the area of D. [7]

6. Write the following integral using spherical coordinates if the region E is bounded below by [10] $z = \sqrt{x^2 + y^2}$ and above by z = 1. Do not evaluate.

$$\iiint_E y^2 z \ dV$$