Math 2110Q
Practice Exam 2
Fall 2016

NAME:

\qquad

Discussion Section:

Read This First!

- Read the questions and instructions carefully.
- The available points for each problem are given in brackets.
- You must show your work to obtain full credit (and to possibly receive partial credit). Correct answers with no justification will not receive credit.
- Make sure your answers are clearly indicated, and cross out any work you do not want graded.
- Do not leave any blanks! Even if you do not arrive at an answer, show as much progress towards a solution as you can, and explain your reasoning.
- Calculators are allowed, but models that can do symbolic computations (TI-89 and above, including TI-NSpire) are not allowed.

Grading - For Administrative Use Only

Page:	1	2	3	4	5	Total
Points:	15	10	8	7	10	50
Score:						

1. Find and classify all critical points for the function $f(x, y)=\frac{1}{2} y^{2}-\frac{1}{3} x^{3}-x y+2 x+5$
2. Reverse the order of integration for the iterated integral

$$
\int_{0}^{2} \int_{x^{2}}^{2 x} f(x, y) d y d x
$$

3. Fill in the missing blanks in the following chart.

Surface	Cartesian	Cylindrical	Spherical
Sphere	$x^{2}+y^{2}+z^{2}=16$		
Cone			$\phi=\frac{\pi}{4}$
	$x=3$	$z=r^{2}$	$\rho \sin \phi \cos \theta=3$
Paraboloid		$r=1$	$\rho=\csc \phi$

4. Set up a triple integral that could be used to compute the volume contained between the $x y$ plane and the surface $z=2\left(x^{2}+y^{2}\right)+3$ over the region D in the second quadrant enclosed by $x^{2}+y^{2} \leq 25$ using
(a) Cartesian coordinates.
(b) Cylindrical coordinates.
5. Let D be the region in the $x y$-plane enclosed by $y=x, y=-x$, and $x^{2}+y^{2}=8$, assuming $x \geq 0$. Sketch the region D and use a double integral in polar coordinates to compute the area of D.
6. Write the following integral using spherical coordinates if the region E is bounded below by $z=\sqrt{x^{2}+y^{2}}$ and above by $z=1$. Do not evaluate.

$$
\iiint_{E} y^{2} z d V
$$

