

University of Connecticut Department of Mathematics

Math 2110Q

PRACTICE EXAM 1

Fall 2016

NAME: _____

DISCUSSION SECTION:

Read This First!

- Read the questions and instructions carefully.
- The available points for each problem are given in brackets.
- You must **show your work** to obtain full credit (and to possibly receive partial credit). Correct answers with no justification will not receive credit.
- Make sure your answers are clearly indicated, and cross out any work you do not want graded.
- Do not leave any blanks! Even if you do not arrive at an answer, show as much progress towards a solution as you can, and explain your reasoning.
- Calculators are allowed, but models that can do symbolic computations (TI-89 and above, including TI-NSpire) are not allowed.

Page:	1	2	3	4	5	Total
Points:	11	11	9	10	9	50
Score:						

Grading - For Administrative Use Only

1. Assume that \vec{a} and \vec{b} are orthogonal, nonzero vectors. In what direction does $\vec{a} \times (\vec{a} \times \vec{b})$ point? [5] Explain your answer.

2. If the angle between two planes is defined as the angle between their normal vectors, find the [6] angle between the planes x + y = 2 and $x + y + \sqrt{2}z = \sqrt{6}$.

3. Find an equation for the line containing the point (-3, 4, 2) that is parallel to the line $\vec{r}(t) = \langle 1 - t, 2 + 3t, 5t \rangle$.

4. The total resistance R produced by three conductors with resistances R_1 , R_2 , and R_3 connected [6] in a parallel electric circuit is given by the formula

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}.$$

Find $\partial R / \partial R_1$.

5. Describe the shape of the traces z = k for the surface $x^2 + y^2 - z^2 = 1$. Sketch a graph of a trace for at least one value each with k < 0, k = 0, and k > 0. [9]

6. Consider the function $f(x,y) = x^2(y^3+1)^2 + 3x$. (a) Compute $\vec{\nabla} f$.

(b) Find an equation of the tangent plane at the point (1, 1, 7).

[5]

7. Determine a function f(x, y) that has partial derivatives $f_x = x + 4y$ and $f_y = 3x - y$. If no [5] such function exists, explain why not.

8. If $f(x,y) = 2x^2 - 3y$, find $D_{\vec{u}}f(1,1)$ if \vec{u} is the unit vector $\left\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle$. [4]