Score: _____ /20

Line Integrals vs. Surface Integrals

Please staple your work and use this page as a cover page.

1. Let $\vec{F} = \langle e^{yz}, xze^{yz}, xye^{yz} \rangle$.

- (a) Show that \vec{F} is a conservative vector field.
- (b) Find a function f(x, y, z) so that $\vec{F} = \vec{\nabla} f$. (You can do this without showing much work!)
- (c) If C is the line segment from (3, 0, 5) to (3, 2, 0), evaluate the line integral

$$\int_C \vec{F} \cdot d\vec{r}.$$

(d) If C is the curve of intersection between the cylinder $x^2 + y^2 = 4$ and the plane 3x - 2y + 7z = 12, evaluate the line integral

$$\int_C \vec{F} \cdot d\vec{r}.$$

(e) If S is the portion of the xz-plane with $-1 \le x \le 1$ and $0 \le z \le 1$ oriented in the direction of the y-axis, evaluate the surface integral

$$\iint_{S} \vec{F} \cdot d\vec{S}.$$

(f) If S is the surface $z = \sqrt{x^2 + y^2}$ with $0 \le z \le 4$ and outward orientation, evaluate the surface integral

$$\iint_{S} \operatorname{curl} \vec{F} \cdot d\vec{S}$$

- 2. Let $\vec{F} = \langle -y, z, -x \rangle$.
 - (a) If C is the circle $x^2 + y^2 = 4$, z = 0, traversed once counterclockwise, evaluate the line integral

$$\oint_C \vec{F} \cdot d\vec{r}.$$

(b) If S is the surface $x^2 + y^2 \leq 4$, z = 0, with upward orientation, evaluate the surface integral

$$\iint_{S} \vec{F} \cdot d\vec{S}.$$

- (c) Compute $\operatorname{curl} \vec{F}$.
- (d) If S is the top half of the sphere $x^2 + y^2 + z^2 = 4$ with outward orientation, evaluate the surface integral

$$\iint_{S} \operatorname{curl} \vec{F} \cdot d\vec{S}.$$

(e) If S is the portion of the surface $z = 4 - x^2 - y^2$ with $z \ge 0$ and outward orientation, evaluate the surface integral

$$\iint_{S} \operatorname{curl} \vec{F} \cdot d\vec{S}.$$