Name: _

Score: _____ /20

Line Integrals

Please staple your work and use this page as a cover page.

- 1. Evaluate the line integral $\int_C (x^2 + 2y) \, ds$ if C is the line segment from (0,3) to (4,6).
- 2. Evaluate the line integral $\int_C (x^2 + y^2 + z^2) ds$ if C is the curve given by $x = t, y = \cos 2t, z = \sin 2t, 0 \le t \le 2\pi$.
- 3. Evaluate the line integral $\int_C \vec{F} \cdot d\vec{r}$ if $\vec{F}(x,y) = \langle xy, 3y^2 \rangle$ and C is the curve given by $x = 11t^4$, $y = t^3$, $0 \le t \le 1$.
- 4. Evaluate the line integral $\int_C \vec{F} \cdot d\vec{r}$ if $\vec{F}(x, y, z) = \langle x, y, xy \rangle$ and C is the curve given by $x = \cos t$, $y = \sin t$, z = t, $0 \le t \le \pi$.
- 5. Use a line integral to prove that the lateral surface area of a cylinder of height h and radius r is $2\pi rh$.
- 6. Consider the force field $\vec{F}(x,y) = \langle x^2, xy \rangle$.
 - (a) If a particle moves once around the circle $x^2 + y^2 = 4$ in the counter-clockwise direction, find the work done by the given force field on the particle.
 - (b) Does anything change if the particle moves around the circle in the clockwise direction instead? Explain.
- 7. Show that a constant force field does zero work on a particle that moves once around the circle $x^2 + y^2 = 1$. Is the work still zero if the radius is not 1? Explain.