Score: _____ /20

Line Integral Theorem Practice

Please staple your work and use this page as a cover page.

1. Let $\vec{F}(x,y) = \langle y^2, x^2y \rangle$ and C the rectangle with vertices (0,0), (5,0), (5,4), and (0,4) and positive orientation. Consider the line integral

$$\int_C \vec{F} \cdot d\vec{r}.$$

- (a) Compute this line integral directly by definition.
- (b) Compute the integral instead using Green's Theorem.
- 2. Compute $\int_C \vec{F} \cdot d\vec{r}$ if $\vec{F} = \langle y \cos x xy \sin x, xy + x \cos x \rangle$ and C is the triangle formed by going from (0,0) to (0,4) to (2,0) to (0,0).
- 3. Say that we have a region D in the plane with closed boundary curve C that is positively oriented, \vec{n} the outward unit normal vector to the curve C, and a vector field $\vec{F} = \langle P, Q \rangle$. Green's Theorem can also be written in the following vector form

$$\int_{C} \vec{F} \cdot \vec{n} \, ds = \iint_{D} \operatorname{div} \vec{F} \, dA = \iint_{D} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) \, dA$$

Using this version of Green's Theorem, compute $\int_C \vec{F} \cdot \vec{n} \, ds$, if $\vec{F} = \langle xy^2, x^2y \rangle$ and C is the curve given by $\vec{r}(t) = \langle 3\cos t, 3\sin t \rangle$, $0 \leq t \leq 2\pi$ with positive orientation.

Note: the quantity $\operatorname{div} \vec{F}$ appearing in this integral is called the *divergence* of \vec{F} . We will soon see and study some useful properties of the divergence of a vector field.

- 4. Let $\vec{F}(x, y, z)$ be a vector field and assume $\vec{F} = \vec{\nabla}f$ for some function f(x, y, z). If $\int_{C_1} \vec{F} \cdot d\vec{r} = 2$ and C_1 is given by $\vec{r_1}(t) = \langle t, t^2, t^3 \rangle$, $0 \leq t \leq 1$, then what is the value of $\int_{C_2} \vec{F} \cdot d\vec{r}$, if C_2 is given by $\vec{r_2}(t) = \langle 1 \frac{1}{2}t, -\frac{1}{8}(t^3 8), \cos(\frac{\pi t}{4}) \rangle$, $0 \leq t \leq 2$? Justify your answer.
- 5. Let C be a closed curve with positive orientation. For which of the following vector fields could you guarantee

$$\int_C \vec{F} \cdot d\vec{r} = 0?$$

Explain your answer.

- (a) $\vec{F}(x,y) = \langle y^2 2x, 2xy \rangle$
- (b) $\vec{F}(x,y) = \langle 1,3 \rangle$
- (c) $\vec{F}(x,y) = \langle ye^x, e^x + e^y \rangle$
- (d) $\vec{F}(x,y) = \langle xy + y^2, x^2 + 2xy \rangle$
- (e) $\vec{F}(x,y) = \left\langle x e^{\sin y}, x e^{\sin y} \cos y \right\rangle$