§ 14.2 Limits

Say that we have a function y = f(x). If we pick a value z = a, we can take the limit as = approaches a
from either the left or the right, and we say that the limit exists if these two values are equal. Also recall
that such a function is said to be continuous at x = a if the limit exists and is equal to the function’s value
at a.

For a function f(z,y) we write the limit as the point (x,y) approaches the point (a,b), that is
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The difference is that there are an infinite number of directions and ways to approach the point (a,b). We
say that the limit exists and is equal to a value L if it is the same along any path C approaching (a,b).
In particular, the limit does not exist if we can find two different curves approaching (a,b) that approach
different values.
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Example 1: For f(z,y) = v —:_ y7 does the limit exist at the point (0,0)?
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If we approach the point (0,0) along the z-axis, meaning y = 0, we get
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However, if we approach along the y-axis, namely = = 0, we get
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Since the limits are not equal in two different directions, then the limit does not exist at the point (0, 0).

Figure 1: The function f(x,y) near the point (0,0). Image courtesy of desmos.com.

But what if the limits are the same in the x- and y-directions? Does that mean that the limit exists?



2xy

Example 2: Does the limit exist at (0,0) for the function f(z,y) = m?
Start by finding the limits along the z-axis and y-axis:
li = i —— =0.
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However, we can also approach the point (0,0) along the line y = z, what do we get?
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In fact, if we approach along any line through the origin y = mz, we get
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Therefore, the limit does not exist at the point (0, 0).
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Example 3: Compute the limit as (x,y) — (0,0) for f(x,y) = e if it exists.
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so we observe that there is a hole in the graph at (0,0), but since the limit is unaffected by a hole,
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Therefore, even though (0,0) is not in the domain of the function f(x,y), the limit exists at (0,0) and is
equal to 0.

Sometimes approaching a point along linear paths isn’t enough to show that a limit does not exist. Take
this next function, for example.
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Example 4: Find the limit as (z,y) — (0,0) for f(z,y) = % if it exists.
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If we approach (0,0) in a linear direction, we get
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However, if we approach (0,0) along the path 2 = y*, what happens?
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so the limit at (0,0) does not exist.



