Score: _____ /20

Using the Divergence Theorem

Please staple your work and use this page as a cover page.

- 1. Let $\vec{F} = \langle z, y, x \rangle$ and let S be the surface $x^2 + y^2 + z^2 = 16$ with outward orientation.
 - (a) Compute the flux of \vec{F} across the surface S using the **definition** of a surface integral. Hint: Show that you can parameterize S via $\vec{r}(u, v) = \langle 4\sin u \cos v, 4\sin u \sin v, 4\cos u \rangle$. Once you do that, you may feel free to use the following (without showing work):

 $\vec{r}_u \times \vec{r}_v = \langle 16\sin^2 u \cos v, 16\sin^2 u \sin v, 16\sin u \cos u \rangle.$

- (b) Use the Divergence Theorem to find the flux instead.
- 2. Let S be the surface of the solid bounded by $y^2 + z^2 = 1$, x = -1, and x = 2 and let $\vec{F} = \langle 3xy^2, xe^z, z^3 \rangle$. Calculate the flux of \vec{F} across the surface S, assuming it has positive orientation.
- 3. Let S be the surface $x^2 + y^2 + z^2 = 4$ with positive orientation and let $\vec{F} = \langle x^3 + y^3, y^3 + z^3, z^3 + x^3 \rangle$. Evaluate the surface integral

$$\iint_{S} \vec{F} \cdot d\vec{S}.$$

- 4. Compute $\iint_{S} \vec{F} \cdot d\vec{S}$ if $\vec{F} = \langle x^2y, -xy^2, 4z(z^2-1) \rangle$ if S is the unit cube with outward orientation formed by the points (0,0,0), (1,0,0), (0,1,0
 - (1,1,0), (0,0,1), (1,0,1), (0,1,1), and (1,1,1), minus both the top and bottom faces.

Hint: Think about the behavior of the vector field \vec{F} on the top and bottom faces. Where would a normal vector point there?

5. Let $\vec{F}(x, y, z) = \langle P, Q, R \rangle$ be a vector field and S a closed surface with positive orientation containing a region E. Use the Divergence Theorem to compute

$$\iint_{S} \operatorname{curl} \vec{F} \cdot d\vec{S}.$$