Math 2110Q: Helpful Formulas

1. The Second Derivative Test

Let (a,b) be a critical point of a function f(x,y) with $D(x,y) = f_{xx}f_{yy} - f_{xy}^2$.

- 1. If D(a,b) > 0, then (a,b) is either a local maximum or minimum
 - (a) $f_{xx}(a,b) < 0 \Rightarrow (a,b)$ is a local maximum
 - (b) $f_{xx}(a,b) > 0 \Rightarrow (a,b)$ is a local minimum
- 2. $D(a,b) < 0 \Rightarrow (a,b)$ is a saddle
- 3. $D(a,b) = 0 \Rightarrow$ the test is inconclusive

2. Summary of Line Integrals and Surface Integrals

LINE INTEGRALS	SURFACE INTEGRALS
$C: \vec{r}(t), \ a \leqslant t \leqslant b$	$S: \vec{r}(u,v), \ (u,v) \in D$
$ds = \vec{r}'(t) dt = $ arc length differential	$dS = \vec{r}_u \times \vec{r}_v dA = \text{surface area differential}$
$\int_C f(x, y, z) ds = \int_a^b f(\vec{r}(t)) \vec{r}'(t) dt$	$\iiint_{S} f(x, y, z) dS = \iint_{D} f(\vec{r}(u, v)) \vec{r}_{u} \times \vec{r}_{v} dA$
(independent of orientation of C)	(independent of orientation of S)
$d\vec{r} = \vec{r}'(t) dt$	$d ec{S} = (ec{r}_u imes ec{r}_v) \; dA$
$\int_{C} \vec{F} \cdot d\vec{r} = \int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}'(t) dt$	$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{D} \vec{F}(\vec{r}(u,v)) \cdot (\vec{r}_{u} \times \vec{r}_{v}) dA$
(depends on orientation of C)	(depends on orientation of S)
Theorems that may apply:	Theorems that may apply:
Fundamental Theorem for Line Integrals Green's Theorem	Stokes' Theorem Divergence Theorem

$$\int_a^b F'(x) \, dx = F(b) - F(a)$$

Fundamental Theorem for Line Integrals

$$\int_{C} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$

Green's Theorem

$$\iint\limits_{P} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = \int_{C} P \, dx + Q \, dy$$

Stokes' Theorem

$$\iint\limits_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \int_{C} \mathbf{F} \cdot d\mathbf{r}$$

Divergence Theorem

$$\iiint\limits_{E} \operatorname{div} \mathbf{F} \, dV = \iint\limits_{S} \mathbf{F} \cdot d\mathbf{S}$$

