
Math 1071 Spring 2016, Exam 2 Review Answers

1. For parts (a)-(c) below, we use tangent line approximation f(x) ⇡ f(c) + f

0(c)(x� c).

(a) Using f(x) =
p
x, c = 16 and x = 15.7, we see f

0(x) = 1
2
p
x

, so

p
15.7 = f(15.7)

⇡ f(16) + f

0(16)(15.7� 16)

=
p
16 +

1

2
p
16

(�0.3)

= 4 +
1

8
(�0.3)

= 3.9625

(b) Using f(x) = x

3, c = 2 and x = 1.8, we see f

0(x) = 3x2, so

(1.8)3 = f(1.8)

⇡ f(2) + f

0(2)(1.8� 2)

= 23 + 3(2)2(�0.2)

= 8 + 3 · 4(�0.2)

= 5.6
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(c) Using f(x) = ln x, c = 1, and x = 1.2, we see f

0(x) = 1/x, so

ln 1.2 = f(1.2)

⇡ f(1) + f

0(1.2)(1.2� 1)

= ln 1 +
1

1
(0.2)

= 0 + 0.2

= 0.2

2. The linear approximation formula is given by f(c + h) � f(c) ⇡ f

0(c)h. Since we are

interested in the change of area of a square when side length increases from 3 inches to

3.2 inches, we use the function f(x) = x

2, where x denotes the length of a side of a square,

c = 3 and h = 3.2� 3 = 0.2. Then the change in area is given by

f(3.2)� f(3) ⇡ f

0(3)(0.2) = 2(3)(0.2) = 1.2 square inches

3. (a) Marginal cost is C 0(x) = 18x
9x2+5 . Since 9x

2 +5 > 0 for all values of x, 18x
9x2+5 > 0 when

18x > 0. This occurs when x > 0.

(b) If p = �0.2x+ 16, revenue is given by R(x) = px = (�0.2x+ 16)x = �0.2x2 + 16x.

Then R

0(x) = �0.4x + 16, and we have a critical value when 0 = �0.4x + 16, that

is, when x = 40. We see

Test Intervals Test Point Sign of f 0
f incr/decr

(�1, 40) 20 + increasing

(40,1) 100 � decreasing

so x = 40 will give us an absolute maximum.

(c) Since profit is revenue less cost, we have

P (x) = R(x)� C(x) = (�0.2x2 + 16x)� (5 + 8x) = �0.2x2 + 8x� 5.

Then P

0(x) = �0.4x+ 8, and we have a critical value when 0 = �0.4x+ 8, that is,

when x = 20. We see

Test Intervals Test Point Sign of f 0
f incr/decr

(�1, 20) 10 + increasing

(20,1) 100 � decreasing

2



so profit is maximized when x = 20. The maximum profit is P (20) = 75.

(d) R

0(x) = �3x2 + 75 = �3(x2 � 25) = �3(x + 5)(x � 5), so we have critical values

when 0 = �3(x+ 5)(x� 5), that is, when x = �5 or x = 5.

Test Intervals Test Point Sign of f 0
f incr/decr

(�1,�5) -100 � decreasing

(�5, 5) 0 + increasing

(5,1) 100 � decreasing

so we have a maximum when x = 5.

4. First note, dx

dp

= � 1
(10+p)2 . Then

E(p) = �p

x

dx

dp

= � p⇣
1

10+p

⌘
✓
� 1

(10 + p)2

◆
=

p

10 + p

.

• E(5) = 1/3

• E(10) = 1/2

• E(100) = 10/11

In each of these cases E < 1, so demand is inelastic.

5. First note, dx

dp

= � 3
p

4 . Then

E(p) = �p

x

dx

dp

= � p⇣
1
p

3

⌘
✓

3

p

4

◆
= 3.

Since E(p) = 3 for all p, there are no values of p that will make E = 1. For the last part

of the problem, we use the theorem that says revenue is maximized when E = 1. But

since there is no p which will make E = 1, for this problem, there is no solution.

6. (a) Critical values of f : x = 2 and x = 4

Test Intervals Test Point Sign of f 0(x) f incr/decr

(�1, 2) 0 + increasing

(2, 4) 3 � decreasing

(4,1) 10 + increasing

f is increasing on (�1, 2) [ (4,1) and decreasing on (2, 4)
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(b) Critical values of f : x = �1, x = 1, and x = 2

Test Intervals Test Point Sign of f 0(x) f incr/decr

(�1,�1) -10 � decreasing

(�1, 1) 0 � decreasing

(1, 2) 3
2 � decreasing

(2,1) 5 + increasing

f is increasing on (2,1) and decreasing on (�1,�1) [ (�1, 1) [ (1, 2)

(also acceptable: f is increasing on (2,1) and f is decreasing on (�1, 2))

(c) Critical values of f : x = 1, x = �2

Test Intervals Test Point Sign of f 0(x) f incr/decr

(�1,�2) -10 + increasing

(�2, 1) 0 � decreasing

(1, 3) 2 + increasing

(3,1) 10 + increasing

f is increasing on (�1,�2) [ (1, 3) [ (3,1) and decreasing on (�2, 1)

7. (a) f

0(x) = �24x5 � 20x3 = �4x3(6x2 + 5), so we have only one critical value x = 0.

Test Intervals Test Point Sign of f 0(x) f incr/decr

(�1, 0) -100 + increasing

(0,1) 100 � decreasing

so we have a relative maximum of f(0) = 5

(b) First, let us observe that the domain of g is (0,1). Next, observe g0(x) = 1� 1/x =
x�1
x

, so we have only one critical value x = 1.

Test Intervals Test Point Sign of g0(x) g incr/decr

(0, 1) 1
2 � decreasing

(1,1) 100 + increasing

so we have a relative minimum of g(1) = 1.

8. • The critical values of f(x) are the x-values that are in the domain of f where f 0(x) =

0 or f

0(x) is undefined. According to the graph, f 0(x) is defined everywhere and

f

0(x) = 0 when x = �4, x = �1, x = 2) and x = 3.
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• f is increasing when f

0(x) > 0. This occurs on (�4,�1) [ (�1, 2) [ (3,1). Also

acceptable: (�4, 2) [ (3,1)

• f is decreasing when f

0(x) < 0. This occurs on (�1,�4) [ (2, 3).

• The x-values of local maxima are x = 2

• The x-values of local minima are x = �4, x = 3

• The graph of f is concave up when f

0(x) is increasing. This occurs on (�1,�3.25)[
(�1, 0.75) [ (2.6,1) (decimals are approximate)

• The graph of f is concave down when f

0(x) is decreasing. This occurs on (�3.25,�1)[
(0.75, 2.6)

• The inflection values are the x-values on which the graph of f changes concavity.

This occurs when x = �3.25, x = �1, x = 0.75, and x = 2.6

9. (a)

Test Intervals Test Point Sign of f 00(x) f concave up/down

(�1, 0) -10 + concave up

(0, 2) 1 � concave down

(2, 4) 3 � concave down

(4,1) 10 + concave up

f is concave down on (0, 2) [ (2, 4) (also acceptable (0, 4)) and concave up on

(�1, 0) [ (4,1), with inflection values at x = 0 and x = 4

(b)

Test Intervals Test Point Sign of f 00(x) f concave up/down

(�1,�2) -100 � concave down

(�2, 0) -1 + concave up

(0, 2) 1 � concave down

(2,1) 100 + concave up

f is concave up on (�2, 0) [ (2,1) and concave down on (�1,�2) [ (0, 2) with

inflection values at x = �2, 0, 2

(c)

Test Intervals Test Point Sign of f 00(x) f concave up/down

(�1,�2) -100 � concave down

(�2,�1) -3/2 + concave up

(�1, 0) -1/2 + concave up

(0, 1) 1/2 � concave down

(1, 3) 2 � concave down

(3,1) 100 + concave up
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f is concave down on (�1,�2)[(0, 1)[(1, 3) and concave up on (�2,�1)[(�1, 0)[
(3,1) with inflection values x = �2, 0, 3

10. (a) f

0(x) = �3x2 + 12x� 9 ) f

00(x) = �6x+ 12 = �6(x� 2); f 00(x) = 0 when x = 2

Test Intervals Test Point Sign of f 00(x) f concave up/down

(�1, 2) 0 + concave up

(2,1) 100 � concave down

Thus f is concave up on (�1, 2) and concave down on (2,1), with an inflection

value at x = 2.

(b) g

0(x) = xe

x + e

x ) g

00(x) = (xex + e

x) + e

x = xe

x + 2ex = e

x(x + 2); g00(x) = 0

when e

x = 0 or x+ 2 = 0. Since e

x

> 0 for all values of x, the g

00(x) = 0 only when

x = �2.

Test Intervals Test Point Sign of g00(x) g concave up/down

(�1,�2) �10 � concave down

(�2,1) 0 + concave up

11. Note: What happens to the graph of f 00 is unclear when x = 5. If you assume that f 00

continues to increase, which we will assume here, then f

00(5) = 0 and f

00
> 0 on (5,1)

If you assume di↵erently, your answer will di↵er from that below. On the exam, we will

likely only ask about the domain of the graph that is visible.

• The graph of f is concave up when f

00
> 0. This occurs on (�1,�3)[(�1, 2)[(5,1)

• The graph of f is concave down when f

00
< 0. This occurs on (�3,�1) [ (2, 5)

• The inflection values are the x-values for which f changes from concave up to concave

down or vice-versa. This occurs when x = �3, x = �1, x = 2, and x = 5.

12. (a) lim
x!1

x

2

x

3+1 = lim
x!1

x

2

x

3+1

⇣
1/x3

1/x3

⌘
= lim

x!1
1/x

1+1/x3 = 0
1+0 = 0

(b) lim
x!1

p
x = 1

(c) lim
x!�1

x

4�x

2+x�1
x

3+1 = lim
x!�1

x

4�x

2+x�1
x

3+1

⇣
1/x3

1/x3

⌘
= lim

x!�1
x�1/x+1/x2�1/x3

1+1/x3 = �1

(d) lim
x!1

x

2�1p
x�3 = lim

x!1
x

2�1p
x�3

⇣
1/

p
x

1/
p
x

)
⌘
= lim

x!1
x

3/2�1/
p
x

1�3/
p
x

= 1

(e) lim
x!�1

q
1� 1

x

2 = 1, since lim
x!1

1/x2 = 0

(f) lim
x!1

6ex

e

x�2e�x

= lim
x!1

6ex

e

x�2e�x

⇣
1/ex

1/ex

⌘
= lim

x!1
6

1�2e�2x = 6
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13. • the critical values of f(x): x = �4,�2.3, 0.85, 3 (values are approximate)

• the largest open intervals on which f(x) is increasing: (�1,�4) [ (�2.3, 0.85) [
(3,1)

• the largest open intervals on which f(x) is decreasing: (�4,�2.3) [ (0.85, 3)

• the x-values of all relative maxima: x = �4, 0.85

• the x-values of all relative minima: x = �2.3, 3

• all inflection values: x = �3,�0.5, 2 (values are approximate)

• the largest open intervals on which the graph of f is concave up: (�3,�0.5)[ (2,1)

• the largest open intervals on which the graph of f is concave down: (�1,�3) [
(�0.5, 2)

• any horizontal or vertical asymptotes: none

14. (a) • Domain: (�1,1)

• lim
x!�1

f(x) = 1, lim
x!1

f(x) = 1, so there are no horizontal asymptotes

• There are no vertical asymptotes

• f

0(x) = 12x3 � 6x2 + 2x = 2x(6x2 � 3x + 1), so we have a critical value when

x = 0
Test Intervals Test Point Sign of f 0

f incr/decr

(�1, 0) -1 � decreasing

(0,1) 1 + increasing

• f

00(x) = 36x2 � 12x+ 2 = 2(18x2 � 6x+ 1) does not equal 0 for any value of x.

Since f

00(x) > 0 for all values of x, the function is concave up on (�1,1)
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(b) • Domain: (�1,�2) [ (�2,1)

• lim
x!1

� x

2

x+2 = lim
x!1

� x

2

x+2

⇣
1/x
1/x

⌘
= lim

x!1
� x

1+2/x = �1

lim
x!�1

� x

2

x+2 = lim
x!�1

� x

2

x+2

⇣
1/x
1/x

⌘
= lim

x!�1
� x

1+2/x = 1
There are no horizontal asymptotes

• lim
x!�2�

� x

2

x+2 = 1

lim
x!�2+

� x

2

x+2 = �1
x = 2 is a vertical asymptote

• g

0(x) = �x(x+4)
(x+2)2 ; g

0(x) = 0 when x = 0 or x = �4; g0(x) is undefined when

x = �2

Test Intervals Test Point Sign of g0 g incr/decr

(�1,�4) �5 � decreasing

(�4,�2) �3 + increasing

(�2, 0) �1 + increasing

(0,1) 2 � decreasing

• g

00(x) = � 8
(x+2)3 ; g

00(x) 6= 0 for any values of x; g00(x) is undefined when x = �2

Test Intervals Test Point Sign of g00 g concave up/down

(�1,�2) �5 + concave up

(�2,1) 0 � concave down

(c) • Observe the denominator is 0, that is x2�x�6 = (x�3)(x+2) = 0 ,when x = 3

and x = �2. Thus the domain of the function is (�1,�2) [ (�2, 3) [ (3,1)

• lim
x!�1

1
x

2�x�6 = lim
x!�1

1
x

2�x�6

⇣
1/x2

1/x2

⌘
= 1/x2

1�1/x�6/x2 = 0; similarly, lim
x!1

h(x) = 0

y=0 is a horizontal asymptote
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• lim
x!�2�

h(x) = 1; lim
x!�2+

h(x) = �1; lim
x!3�

h(x) = �1; lim
x!3+

h(x) = 1
There are vertical asymptotes at x = �2 and x = 3

• h

0(x) = 1�2x
(x2�x�6)2 ; h

0(x) = 0 when x = 1/2, and h

0(x) is not defined when x = �2

or x = 3

Test Intervals Test Point Sign of h0
h incr/decr

(�1,�2) -5 + increasing

(�2, 1/2) 0 + increasing

(1/2, 3) 1 � decreasing

(3,1) 5 � decreasing

• h

00(x) = 2(3x2�3x+7)
(x2�x�6)3 ; h00(x) 6= 0 for any value of x since 3x2 � 3x + 7 > 0 for all

x, and h

00(x) is not defined when x = �2 or x = 3

Test Intervals Test Point Sign of h00
h concave up/down

(�1,�2) �5 + concave up

(�2, 3) 0 � concave down

(3,1) 10 + concave up

(d) • Observe e

x � e

�x = 0 when x = 0, so the domain of j is (�1, 0) [ (0,1).

• lim
x!1

e

x+e

�x

e

x�e

�x

= lim
x!1

e

x+e

�x

e

x�e

�x

⇣
1/ex

1/ex

⌘
= lim

x!1
e

x

/e

x+e

�x

/e

x

e

x

/e

x�e

�x

/e

x

= lim
x!1

1+e

�2x

1�e

�2x = 1+0
1�0 = 1

lim
x!�1

e

x+e

�x

e

x�e

�x

= lim
x!�1

e

x+e

�x

e

x�e

�x

⇣
1/e�x

1/e�x

⌘
= lim

x!�1
e

x

/e

�x+e

�x

/e

�x

e

x

/e

�x�e

�x

/e

�x

= lim
x!�1

e

2x+1
e

2x� =
1+0
1�0 = �1

There are horizontal asymptotes at y = 1 and y = �1.

• lim
x!0�

e

x+e

�x

e

x�e

�x

= �1 and lim
x!0+

e

x+e

�x

e

x�e

�x

= 1
There is a vertical asymptote at x = 0
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• j

0(x) = �4
(ex�e

�x)2 ; j
0(x) = 0 for no value of x, so there are no critical points.

Test Intervals Test Point Sign of j0 j incr/decr

(�1, 0) -10 � decreasing

(0,1) 10 � decreasing

• j

00(x) = 8(ex+e

�x)
(ex�e

�x)3 ; j
00(x) = 0 for no values of x

Test Intervals Test Point Sign of j00 j concave up/down

(�1, 0) -10 � concave down

(0,1) 10 + concave up

15. The graph of f(x) is on the next page
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16. (a) f

0(x) = �6x(x� 1), so the critical values of f are x = 0 and x = 1

• On [�1
2 ,

1
2 ], f(�1/2) = 1, f(0) = 0, f(1/2) = 1/2, so the absolute maximum is

f(�1/2) = 1 and the absolute minimum is f(0) = 0

• On (�1
2 ,

1
2), we no longer have an absolute maximum. However, the absolute

minimum is still f(0) = 0

• On [0, 2], f(0) = 0, f(1) = 1 and f(2) = �4, so the absolute maximum is

f(1) = 1 and the absolute minimum is f(2) = �4

• On [0, 2), we no longer have an absolute minimum. However, the absolute

maximum is still f(1) = 1

(b) f

0(x) = x

2(5x2 � 16x+ 3), so the critical values are x = 0, x = 1/5, and x = 3

• On [0, 2], f(0) = �10, f(1/5) = �9.99808, f(2) = �34, so the absolute maxi-

mum is f(1/5) = �9.99808 and the absolute minimum is f(2) = �34

• On [0, 4], f(0) = �10, f(1/5) = �9.99808, f(3) = �64, f(4) = 54, so the

absolute maximum is f(4) = 54 and the absolute minimum is f(3) = �64
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• On (�1,1), we observe that lim
x!�1

x

5 � 4x4 + x

3 � 10 = �1 and lim
x!1

x

5 �
4x4 + x

3 � 10 = 1, so there is no absolute maximum or minimum

(c) f

0(x) = 4x3 + 6x = 2x(2x2 + 3) has a critical value at x = 0. Observe that on

(�1, 0), f 0(x) < 0 and on (01), f 0(x) > 0, so f(0) = �1 is an absolute minimum.

Moreover, since lim
x!�1 f(x) = 1 and lim

x!1 f(x) = 1, there is no absolute

maximum.

17. Let x denote the length of the field and y denote the width of the field.

Then xy = 20, 000.

The cost per foot of three of the sides is C, where C > 0, and the cost of the fourth side

is 3C. Then the total cost of the fence is given by

3Cy + Cx+ Cy + Cx = 4Cy + 2Cx.

Since xy = 20, 000, we have x = 20, 000/y. Substituting this into the above equation

gives a cost equation (in terms of y):

f(y) = 4Cy +
40, 000C

y

.

We want to minimize this function on the interval (0,1) (since we want the width of the

field to be positive).

Then

f

0(y) = 4C � 40, 000Cy

�2 = 4C � 40, 000C

y

2
=

4Cy

2 � 40, 000C

y

2
.

The critical value of f occurs when 4Cy

2 � 40, 000C = 0, so y = ±100, but only y = 100

makes sense for this problem.
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To see that this is indeed minimum, we can either use the first or second derivative test

(you should choose which one you like better and show your work)

18. Let x denote the number of additional trees over 1000. (So, for example if we plant 1001

trees, x = 1, if we plant 1002 trees, x = 2 and so on.)

Then the total revenue is given by

(50� 0.02x)(1000 + x)

and the total cost of maintenance is given by

10(1000 + x).

Thus the total profit from the orchard is given by revenue less cost, or

f(x) = (50� 0.02x)(1000 + x)� 10(1000 + x) = �0.02x2 + 20x+ 40, 000.

To find the maximum profit, we look to the derivative:

f

0(x) = 20� 0.04x.

The critical values of the derivative occurs when 20�0.04x = 0, or when x = 500. Observe

that f 00(x) = �0.04, so f

00(500) = �0.04 < 0. This implies x = 500 is a maximum. Hence

we should plant 1500 trees to maximize profit for the orchard.

19. Since the box has a square base, denote the length of each side of the base by x, and the

height of the box by h.
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Then the volume of the box is given by

x

2
h = 27.

If the cost per square inch of the side of the box is C, where C > 0, then the cost per

square inch of the of the bottom of the box is given by 2C. Then the total cost of the

box is given by

2Cx

2 + 4Cxh.

Since x

2
h = 27, we have h = 27/x2. Substituting this into the above equation gives a

cost equation (in terms of x):

f(x) = 2Cx

2 + 4Cx

✓
27

x

2

◆
= 2Cx

2 +
108C

x

=
2Cx

3 + 108C

x

.

We want to minimize this function on the interval (0,1) (since we want the box to have

a positive side length).

Then

f

0(x) =
4C(x3 � 27)

x

2
.

The critical value of f occurs when x

3 � 27 = 0, or when x = 3. Observe f

0(x) < 0 on

(0, 3) and f

0(x) > 0 on (3,1), so x = 3 is an absolute minimum.

Therefore, the box should have dimensions 300x300x300 to minimize cost. The minimum

cost is 54C, where C is the cost per square inch of material used.
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