

University of Connecticut Department of Mathematics

University of Connecticut Department of Mathematics **Math 1071Q** Exam 2, Fall 2015

Duration: 120 minutes

Name: ______ Section: _____ Instructor's Name: _____

Page	Points	Score
2	12	
3	16	
4	10	
5	20	
6	16	
7	14	
8	12	
Total:	100	

- 1. Write clearly. Points may be deducted if your work is messy or your answer unclear;
- 2. Answer the questions in the space provided. You may use the back of the page if necessary;
- 3. You must show your work or explain your solution, otherwise points may be deducted;
- 4. No credit will be given for incorrect steps nor will credit be given for correct solutions arrived at by incorrect means;
- 5. If you make an unnecessary approximation in your solution to a problem, your answer will be judged on its accuracy. Points may be deducted for poor or inappropriate approximation;

1. (a) (6 points) Find the derivative of $f(x) = \ln(3x^2 + 3x - 1)$.

Solution: Let $y = \ln(3x^2 + 3x - 1)$ and let $u = 3x^2 + 3x - 1$. Then $\frac{du}{dx} = 6x + 3$ and $y = \ln u$. So, $f'(x) = \frac{dy}{dx} = \frac{dy}{dy} \cdot \frac{du}{dx} = \frac{1}{u} \cdot (6x + 3) = \frac{6x + 3}{3x^2 + 3x - 1}$.

(b) (6 points) Find the derivative of $f(x) = e^{\sqrt{x}} + \sqrt{\ln x}$

Solution:
$$f'(x) = \frac{1}{2} \cdot \frac{1}{\sqrt{x}} e^{\sqrt{x}} + \frac{1}{2} \cdot \frac{1}{x} \cdot \frac{1}{\sqrt{\ln x}} = \frac{e^{\sqrt{x}}}{2\sqrt{x}} + \frac{1}{2x\sqrt{\ln x}}.$$

2. (a) (8 points) Find where the function

$$f(x) = x - \ln(x)$$

is increasing and decreasing. What are the critical points of f(x)?

Solution: The domain of f(x) is $(0, \infty)$. The derivative of f(x) is $f'(x) = 1 - \frac{1}{x}$. So f'(x) = 0 when x = 1 (and is undefined when x = 0). Therefore (1, f(1)) = (1, 1) is the only critical point of f. Moreover, f'(1/2) = -1 < 0 so f is decreasing on (0,1) and f'(2) = 1/2 > 0 so f is increasing on $(1, \infty)$.

(b) (8 points) Find where the function

$$f(x) = x^4$$

is concave up and concave down. What are the inflection points of f(x)?

Solution: The first derivative is $f'(x) = 4x^3$ and the second derivative is f''(x) = $12x^{2}$. So f''(x) exists everywhere and f''(x) = 0 when x = 0. Moreover, f''(-1) = 12 > 0 and f''(1) = 12 > 0. So, f is concave up on $(-\infty, 0)$ and $(0,\infty).$

Therefore, f does not have a point of inflection.

3. (a) (5 points) Compute the limit

$$\lim_{x \to \infty} \frac{x^2 + 5x + 6}{2x^2 - 6x}.$$

Solution:
$$\lim_{x \to \infty} \frac{x^2 + 5x + 6}{2x^2 - 6x} = \lim_{x \to \infty} \frac{1 + \frac{5}{x} + \frac{6}{x^2}}{2 - \frac{6}{x}} = \frac{1}{2}.$$

(b) (2 points) Compute the limit

$$\lim_{x \to 2} \frac{x^2 + 5x + 6}{2x^2 - 6x}.$$

Solution:	
	$\lim_{x \to 2} \frac{x^2 + 5x + 6}{2x^2 - 6x} = \frac{20}{-4} = -5.$
	$\lim_{x \to 2} \frac{1}{2x^2 - 6x} = \frac{1}{-4} = -3.$

(c) (3 points) What do the answers to parts (a) and (b) tell us about the asymptotes of the graph of

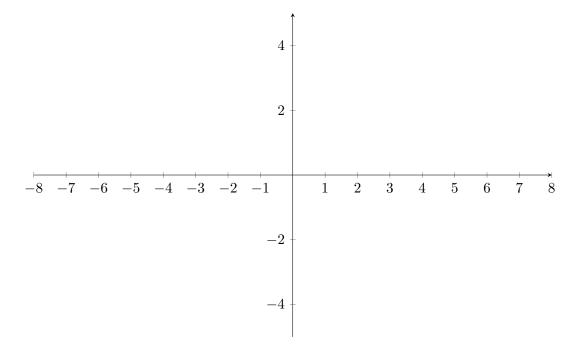
$$f(x) = \frac{x^2 + 5x + 6}{2x^2 - 6x}.$$

Solution: Part (a) tells us that the line $y = \frac{1}{2}$ is a horizontal asymptote to the graph of f(x).

Part (b) tells us nothing about the asymptotes of the graph of f(x).

- 4. (12 points) Sketch the graph of a function f(x) that has all of the following properties:
 - f(-7) = f(-4) = f(1) = f(6) = 0, f(-2) = 4, f(4) = -2
 - f'(-2) = f'(4) = 0
 - f''(0) = 0
 - $\lim_{x\to-\infty} f(x) = -2$, $\lim_{x\to\infty} f(x) = 2$
 - $\lim_{x \to -5^{-}} f(x) = \infty$, $\lim_{x \to -5^{+}} f(x) = -\infty$
 - f'(x) > 0 on $(-\infty, -5) \cup (-5, -2) \cup (4, \infty)$, f'(x) < 0 on (-2, 4)
 - f''(x) > 0 on $(-\infty, -5) \cup (0, 6)$, f''(x) < 0 on $(-5, 0) \cup (6, \infty)$.

You should clearly label any points of inflection on the graph.



- 5. Suppose the demand function for a certain commodity is $x = (10 2p)^2$.
 - (a) (5 points) Find the elasticity of demand E(p).
 - (b) (3 points) Find the price where the revenue is optimised.

Solution:

$$\frac{dp}{dx} = 2(10 - 2p)(-2) = -4(10 - 2p)$$

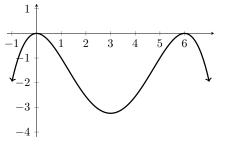
 \mathbf{SO}

$$E(p) = -\frac{p}{(10-2p)^2}(-4)(10-2p) = \frac{4p}{10-2p}.$$

The revenue is optimised when E = 1, i.e. when

$$\frac{4p}{10-2p} = 1$$
 that is $p = \frac{10}{6} = \frac{5}{3}$.

6. (a) (8 points) The following is a graph of f(x).



i. What are the critical values of f(x)?

Solution: x = 0, 3 and 6.

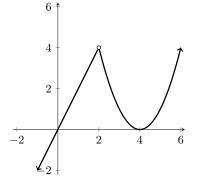
ii. Determine the intervals on which f(x) is increasing and decreasing.

Solution: f is increasing on $(-\infty, 0) \cup (3, 6)$ and decreasing on $(0, 3) \cup (6, \infty)$.

iii. Find the x-coordinates for the relative maxima of f(x).

Solution: x = 0 and x = 6.

(b) (8 points) The following is a graph of f'(x). You may assume that the domain of f(x) is $(-\infty, \infty)$.



i. What are the critical values of f(x)?

Solution: x = 0, 2 and 4.

ii. Determine the intervals on which f(x) is increasing and decreasing.

Solution: f is increasing on $(0, \infty)$ and decreasing on $(-\infty, 0)$.

iii. Determine the intervals where f(x) is concave up and concave down.

Solution: f is concave up on $(-\infty, 2) \cup (4, \infty)$ and concave down on (2, 4).

iv. Find the x-coordinates of any relative extrema of f(x).

Solution: There is a relative minimum at x = 0.

7. (a) (6 points) Find the absolute extreme values of the function

$$f(x) = \frac{1}{3}x^3 - \frac{5}{2}x^2 + 6x$$

on the interval [0, 4].

Solution:

$$f'(x) = 3x^2 - 5x + 6 = (x - 2)(x - 3)$$

So, f'(x) exists everywhere and f'(x) = 0 when x = 2 or x = 3. Now, f(0) = 0, f(2) = 14/3, f(3) = 9/2 and f(4) = 16/3.

Therefore, the absolute minimum value of f(x) on [0, 4] is 0 and the absolute maximum value is 16/3.

(b) (8 points) Find the absolute extreme values (if they exist) of the function

$$f(x) = 3x + \frac{1}{x^3}$$

on the interval $(0,\infty)$

Solution:

$$f'(x) = 3 - \frac{3}{x^4}$$
 and $f''(x) = \frac{12}{x^5}$.

So f'(x) = 0 when $x = \pm 1$ and is undefined when x = 0. Moreover, f''(1) = 12 > 0. So f(1) = 4 is the absolute minimum value on $(0, \infty)$. Finally, $\lim_{x\to 0^+} f(x) = \infty$ so there is no absolute maximum value on $(0, \infty)$. 8. (12 points) If 300 cm^2 of material is available to make a box with a square base and an open top, find the largest possible volume of the box.

Solution: Assume that x is the side-length of the base of the box and y is the height of the box (both in cm).

Then the surface-area A is given by

$$A = x^2 + 4xy = 300$$

and so

$$y = \frac{300 - x^2}{4x}.$$

The volume V is given by

 $V = x^2 y$

and so

$$V = x^2 \left(\frac{300 - x^2}{4x}\right) = 75x - \frac{x^3}{4}.$$

We wish to maximise V as a function of x where $x \in (0, \sqrt{300})$. Now,

$$V'(x) = 75 - \frac{3x^2}{4}$$

and so the critical values of V are $x = \pm 10$ but only x = 10 is in the domain of V.

Moreover, V'(x) > 0 for x < 10 and V'(x) < 0 for x > 10, so x = 10 is a relative maximum for V.

Finally, since x = 10 is the only critical value of V in the open interval $(0, \sqrt{300})$, the absolute maximum volume of $V(10) = 500 \text{ cm}^3$ is attained when x = 10.